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Abstract—I/O performance is a critical aspect of data-intensive
scientific computing. We seek to advance the state of the practice
in understanding and diagnosing I/O performance issues through
investigation of a comprehensive I/O performance data set that
captures a full year of production storage activity at two
leadership-scale computing facilities. We demonstrate techniques
to identify regions of interest, perform focused investigations of
both long-term trends and transient anomalies, and uncover the
contributing factors that lead to performance fluctuation.

We find that a year in the life of a parallel file system is
comprised of distinct regions of long-term performance variation
in addition to short-term performance transients. We demon-
strate how systematic identification of these performance regions,
combined with comprehensive analysis, allows us to isolate the
factors contributing to different performance maladies at differ-
ent time scales. From this, we present specific lessons learned
and important considerations for HPC storage practitioners.

I. INTRODUCTION

I/O performance variation has been studied extensively, and
various conditions have been identified as factors contributing
to poor I/O performance. Most studies have focused on enu-
merating the sources of I/O performance loss at a single point
in time, assuming that performance loss is a transient effect
due to contention from other jobs. However, recent work [1]
has shown that performance variation can occur over periods
of days as a result of systematic, longer-term conditions of
a storage system. Overall performance (and thus scientific
productivity) can be improved for a wide range of users if
these deviations can be identified and attributed quickly in
production. Additionally, the determination of the reasons for
the performance slowdowns can be fed into the design of
future file systems.

A number of recent efforts [1], [2], [3], [4] have advanced
the state of the art in scalable data collection, making it pos-
sible to observe production systems at unprecedented scales.
It remains an open problem, however, how to best interpret
this data quickly for maximum production impact, and which
telemetry sources have the greatest return on investment are
not always clear. Aligning these broad and diverse data sets
and contextualizing and interpreting their contents require
both a deep understanding of I/O performance and a broad
understanding of statistical analysis techniques.

We investigate these issues by studying performance data
collected from large parallel file systems at two leadership-
class high-performance computing (HPC) centers over the
course of a year of production use. In addition to passive
instrumentation, such as system monitoring and application

profiling, we use active probing of I/O performance to record
user-perceived performance over time. The breadth of the data
set enables investigation over multiple time scales, ranging
from days to months, to identify trends in both absolute
performance and variability. The depth of the data set enables
correlation analysis to identify subtle relationships between
performance and a variety of systemwide metrics.

The primary contributions of this work are as follows.
• We have collected, and will make publicly available, an

unprecedented year-long, multifacility I/O performance data
set. It includes the results of daily I/O performance probes
and their associated telemetry data.

• We show that baseline performance and variability change
over time. Factors such as system software updates and
sustained I/O-intensive workloads contribute to long-term
variations.

• We show that the nature of correlations between I/O per-
formance and system metrics also change over time. For
example, we demonstrate that high CPU load can correlate
with favorable performance under healthy file system con-
ditions, and it can coincide with unfavorable performance
when non-I/O workloads are impacting storage servers.

• We show that contention for bandwidth, input/output oper-
ations per second (IOPS), and metadata resources can be
confidently determined to be the sources of transient I/O
performance problems.

• We develop methods for identifying underlying trends
within noisy telemetry data, and we show how analysis
focused on these trends improves the quality of the analysis
results.
This paper is organized as follows. Section II contains

related work, Section III describes the data collection frame-
work, the benchmarks used, and the HPC platforms studied,
Section IV describes our methodology for determining regions
of similar I/O performance, Section V contains the results of
our statistical analysis of the data, Section VI discusses the
broader implications of our work for the state of the practice,
and Section VII presents our conclusions.

II. RELATED WORK

Several recent studies have contributed techniques to com-
bine systemwide HPC instrumentation data for integrated
analysis [1], [2], [3], [4], [5]. Vazhkudai et al. notably used
a Splunk data warehouse to analyze system logs and perform
operational analytics on a large-scale storage system [2]. The
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cloud computing community has also identified the need to
unify analysis capabilities across diverse environments. The
Dapper system developed by Sigelman et al. combines com-
prehensive tracing with a novel sampling method to observe
critical paths in large cloud environments in great detail [6].

Luu et al. [7] studied application I/O logs from multiple
platforms to derive conclusions on I/O system utilization and
library usage. Di et al. [8] and Park et al. [9] have investigated
performing correlation analysis on HPC log data once it has
been collected. Their analyses included compute and network
resources, with a particular emphasis on event logs. Inacio et
al. analyzed performance variability using statistical analysis
of file system read/write operations and concluded that both
the experimental environment and Lustre stripe settings impact
performance applications. Others have documented I/O perfor-
mance variability anecdotes on leadership-scale systems [10],
[11], [12] and proposed methods to combat it.

However, these studies of application I/O and parallel file
system performance and variability are based either on a small
set of applications or on observations over a short duration.
Furthermore, examining how performance and variation may
change over time remains relatively unexplored, with the exist-
ing body of work being largely anecdotal [13]. In this work, we
build upon best-in-class previous efforts by combining system
monitoring, application monitoring, and active performance
probing to quantify holistically how I/O performance variation
manifests across many dimensions over a year-long period.
To this end, we also introduce systematic methods to help
automate the task of deriving actionable insight from these
data sources over multiple time scales. We have analyzed these
holistic data sets for an entire year on multiple parallel file
systems and present a broad statistical analysis that provides
an unprecedented advancement in our understanding of HPC
I/O performance variability.

III. METHODOLOGY

Previous studies have demonstrated the feasibility of holistic
HPC I/O analysis and used it to observe anomalous I/O
behavior and contributing factors over short time scales [1].
This methodology was later formalized in the specification of
the TOKIO (Total Knowledge of I/O) framework [14]. In this
work, we use the TOKIO framework to collect a complete year
of I/O metrics on multiple production platforms. We analyze
the collected data to observe transient and long-term trends
in I/O performance variability. This section summarizes the
TOKIO framework, describes the production HPC platforms
that we have used in this study, and introduces our methodol-
ogy for active probing of storage system performance.

A. Data collection framework

TOKIO is a framework facilitating holistic characterization
and analysis of I/O workloads running on today’s production
HPC systems. Conceptually, it provides an abstraction layer
between component-level monitoring tools already deployed
on HPC platforms and higher-level I/O analysis tools that
utilize this data, as illustrated in Figure 1. The fundamental

Compute Nodes I/O Nodes Storage Nodes

Auxilliary Nodes
(login, data transfer, etc.)

Platform-independent
analysis tools

monitoring

connectors

Fig. 1. Overview of the TOKIO framework, providing holistic analysis across
the numerous components of the I/O subsystem on HPC platforms.

roles of the TOKIO framework are to collate monitoring data
from distinct components, integrate and normalize the data
from these components, and present coherent interfaces for
indexing and accessing this data.

TOKIO uses a modularized software architecture and a
generic data format specification for system monitoring data,
simplifying portability to new HPC platforms. Software mod-
ularity is accomplished by defining abstract connectors to
monitoring sources; these connectors then expose interfaces
for extracting relevant data in a format suitable for TOKIO. A
generic time series format is used for semantically consistent
access to data originating from distinct monitoring tools, even
though each tool uses its own underlying data format with
its own scope and granularity. The time series data format
designates a number of metrics that are common to classes
of monitoring components. For example, file system moni-
toring tools often gather common metrics such as read/write
bandwidths and operation counts. TOKIO connectors can
convert the native data formats of their underlying tools to
this generic format in-memory as part of on-demand analysis,
or TOKIO-aware tools can archive directly into this format
on-disk. These design decisions greatly simplify the process
of integrating new monitoring sources as well the process
of developing platform-independent I/O analysis tools. This
study in particular relies on integrated analysis of the following
monitoring connectors.
• Application-level monitoring: Darshan [15] is an applica-

tion I/O characterization tool that is commonly deployed at
production HPC facilities. It provides a condensed set of I/O
counters, timers, and other statistics for each file accessed by
a given application. Previous analysis [16] has demonstrated
Darshan’s negligible runtime overheads and log file sizes
(ranging from tens of kilobytes to a few megabytes per job,
depending on the workload).

• File system workload monitoring: LMT [17] and ggio-
stat [1] are examples of file system monitoring tools for
Lustre and GPFS deployments, respectively. These tools
each capture metrics quantifying file system workloads
periodically over a time interval, with some of these metrics
being common to both tools (e.g., observed read/write
bandwidths, number of specific metadata operations issued)



and others being file system specific (e.g., CPU utilization
on a given Lustre metadata server captured by LMT). File
system workload data is collected asynchronously outside
of the application data access path to minimize overhead.

• File system capacity/health monitoring: File-system-
specific tools such as Lustre’s lfs and lctl or GPFS’s mmdf
and mmlsdisk can be invoked periodically to capture current
file system state, including the capacity and failover status
of individual storage servers and/or LUNs in the system.

• Resource manager monitoring: Resource managers such
as Slurm [18] often keep a detailed accounting of all jobs
that execute on a particular system, including useful details
like the size of the job and its placement across available
compute nodes.
The telemetric data from these connectors is aggregated into

scalar attributes associated with each job, and all the attributes
associated with a job are represented as feature vectors.
For monitoring sources that produce time-resolved data (e.g.,
LMT reports workload statistics at five-second intervals), we
calculate the sum, minimum, maximum, and average value
of the data generated over the duration of the job and define
those four reduced scalars as attributes of the feature vector.
Wherever possible, attributes are also expressed as coverage
factors [1], which quantify the fraction of systemwide activity
that can be attributed to the job of interest. For example, a
job’s bandwidth coverage factor is the number of bytes read
and written by that job’s application (measured by Darshan)
divided by the number of bytes read and written across the
entire parallel file system (measured by LMT or ggiostat)
while that job was running. A coverage factor of 1.0 indicates
that a job was the exclusive consumer of a resource, while
a coverage factor of 0.4 indicates that other competing jobs
consumed 60% of the total delivered resources.

B. Platforms

We applied the TOKIO framework on the Edison and Cori
systems at NERSC and the Mira system at the ALCF. Each
of these platforms, along with their corresponding file systems
analyzed as part of this study, is briefly described in Table I.

Darshan is installed and automatically enabled on each of
these systems, transparently characterizing the I/O workloads
of a large portion of each system’s job population. NERSC
has deployed LMT for full-time monitoring of the Lustre

TABLE I
DESCRIPTION OF NERSC AND ALCF TEST PLATFORMS.

Platform FS Name (Type)
Servers (LUNs) Size Peak Rate

Edison
(NERSC)

Cray XC30
5,586 CNs

scratch1 (Lustre)
24 (24) 2.2 PiB 48 GB/sec

scratch2 (Lustre)
24 (24) 2.2 PiB 48 GB/sec

scratch3 (Lustre)
36 (36) 3.3 PiB 72 GB/sec

Cori
(NERSC)

Cray XC40
12,076 CNs

cscratch (Lustre)
248 (248) 28 PiB 744 GB/sec

Mira
(ALCF)

IBM BG/Q
49,152 CNs

mira-fs1 (GPFS)
48 (336) 7.0 PiB 90 GB/sec

scratch volumes on both Edison and Cori, while the ALCF has
deployed ggiostat to do the same for the GPFS volumes on
Mira. NERSC systems additionally utilize the Slurm resource
manager, which allows for the capture of detailed metadata for
every job executed on Edison or Cori. Similar job metadata is
available from ALCF’s Ni API. TOKIO can use these data
sources in-place to provide a unified holistic view of I/O
performance without copying data to a dedicated database.

C. I/O Performance Probes

To measure the performance variation on the systems de-
scribed in Section III-B, we ran four I/O-intensive application
benchmarks on a daily basis from February 14, 2017, to
February 15, 2018. We utilize these benchmarking runs as
another monitoring source for this study, actively probing the
user-perceived I/O performance of each analyzed file system
on a daily basis across a range of representative I/O motifs.
The four underlying benchmarks (VPIC [19], BDCATS [20],
[19], HACC [21], and IOR [22]) were chosen to exercise
a variety of I/O workloads and covered the four I/O motifs
(listed in Table II) in both read and write modes. Each probe
was configured to run identically to previous work [1] with
the goal of using a substantial fraction of the I/O subsystem’s
peak bandwidth while using minimal production cycles.

All probes ran using 256 nodes (4,096 processes) on Cori,
128 nodes (2,048 processes) on Edison, and 1,024 nodes
(16,384 processes) on Mira. The shared-file probes on Lustre
were configured to use maximum striping per file, while the
file-per-process probes placed each file on a single off-line
storage table. The objective in both cases was to (in aggregate)
leverage all available storage devices. The default automatic
striping policy was used on GPFS. In the case of Cori and
Edison, each job had access to the full I/O bandwidth of its
I/O nodes as well, but because of the way in which I/O nodes
are allocated in a fixed ratio to job size on Blue Gene/Q
systems [23], Mira jobs were restricted to the bandwidth
provided by eight I/O nodes.

Of the intended probes, 81.9% successfully generated re-
sults, providing 11,986 performance observations across Mira,
Cori, and Edison over the course of a year. The remaining
18.1% of potential probes failed because of system downtime,
malfunctions of component-level monitoring tools or the au-
tomated test scheduling, queue wait times that exceeded 24
hours, or excessive walltime usage. These failed probe samples
(which are not considered in this study) point out the need for
additional analysis in future work that incorporates failure data
as well as performance data.

TABLE II
I/O PERFORMANCE PROBE MOTIFS

O(101 MiB)
Transfers

O(102 MiB)
Transfers

Shared File IOR/shared VPIC and BDCATS
File Per Process IOR/fpp HACC
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Fig. 2. I/O performance grouped by I/O motifs and read(R)/write(W) mode
on different file systems. Whiskers represent the 5th and 95th percentiles.
Edison scratch2 distributions are not shown but closely resemble scratch1.

IV. IDENTIFYING TRENDS

Continuous passive monitoring and active performance
probing produce a large volume of data (≈ 15 GiB) over the
course of a year. We began our investigation by summarizing
the dataset at a high level, establishing methods for organizing
and navigating the data in a semantically meaningful way, and
establishing methods for identifying regions of interest.

A. Dataset overview

Absolute I/O performance is influenced by many factors,
most notably (a) application I/O pattern, (b) read/write ratio,
and (c) I/O system architecture [1], [24]. These make it diffi-
cult to contextualize performance variation across benchmarks
or platforms because each combination is capable of a different
baseline performance level. We address this problem by nor-
malizing the performance of each of the 11,986 observations
in terms of its fraction of peak performance. The fraction of
peak performance is the absolute performance (in bytes/sec) of
an observation divided by the maximum absolute performance
observed across all jobs with a common (a), (b), and (c) above.
This approach allows us to focus on variability for different
classes of I/O workloads rather than their relative performance.

The distribution of the fraction of peak performance mea-
surements for four of the five systems tested is shown in Fig.
2. The figure illustrates that the performance of active I/O per-
formance probes on production file systems is highly dynamic
over the course of a year. It does not provide any insight into
the temporal nature of the performance fluctuations, however.

Figure 3 visualizes the same data in the form of a heatmap
over time. This shows that performance variation is not ran-
domly distributed over the year; this key characteristic is not
captured by time-independent performance distributions. Sev-
eral archetypical forms of correlated performance degradation
observed in Fig. 3 are highlighted in Fig. 4 and fall into three
broad categories of variation.

1) Dark vertical bands, exemplified in the Mira data in Fig.
4a, represent transient systemwide issues that result in a
uniform loss of performance for probes executed that day.

2) Dark horizontal bands, shown in the Cori data in Fig.
4b, indicate a long-term degradation in performance that
disproportionately affects a specific I/O motif.

3) Isolated dark blocks represent individual probes where
performance was poor for a very short period of time.

The preponderance of these time-dependent phenomena
underscores the observation that baseline I/O performance and
variability are not constant over time and that what may qualify
as abnormally poor performance during one period of time
may be the baseline performance expectation during another.

This observation has implications for both HPC facility
operators and users. For facility operators, it indicates that
performance anomalies and their root causes should not be as-
sessed in isolation. By integrating broader spatial and temporal
context into the analysis, facility operators can more accurately
discriminate between application problems and environmental
factors. For users and application developers, it follows that
the accuracy of parameterized I/O performance models [24],
[25] will degrade unless they are reparameterized as the I/O
subsystem that they model evolves. Both these cases justify
the need for a systematic approach for identifying different
regions of I/O performance in order to differentiate long-term
factors and phenomena from short-term transients.

B. Time-dependent analysis

Section IV-A clearly illustrates the presence of time-varying
behavior, but quantitative methods are needed to extract ac-
tionable insight from these observations. The main challenge
that these methods face is differentiating performance trends
from individual short-term fluctuations in time series data. This
problem is not unique to I/O performance or even computer
science, however. Notably, financial market technical analysis
techniques are routinely used for a similar purpose: attenuating
day-to-day volatility in the price of assets and identifying price
movement trends [26], [27].

The most straightforward initial technique to apply from this
domain is the use of simple moving averages (SMAs) over
the performance observations. Given a time window of width
w, the SMA for performance at time t is the arithmetic mean
of the fraction peak performance over −0.5w <= t < +0.5w.
When chosen to be sufficiently short (wshort ∼ O(days)),
the resulting SMAshort provides a rapid visual means to
identify performance degradation or recovery that lasts for
O(days). Multiple SMAs can be plotted simultaneously over
the same dataset to differentiate short- and long-term trends
and identify key crossover points. We further note that SMAs
can be calculated across individual workloads or across a set
of workloads by simply calculating the arithmetic mean of
all relevant performance observations falling within w. The
former is useful for identifying motif-specific or transient
performance issues, while the latter is helpful for detecting
systemic performance issues.
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Fig. 3. Performance of daily probes normalized to the peak observed performance for each probe type (I/O motif and read/write mode combination) on the
specified system. The y-axis labels show combinations of system, I/O motif, and mode (Read/Write). Grey represents days on which no observations were
made. The two regions highlighted in green boxes are expanded upon in Figure 4.
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Fig. 5. Performance evolution of HACC file-per-process workload on Cori.
Green line is the global mean (298 GiB/sec write, 204 GiB/sec read), and
blue bars are raw performance measurements.

An example of an SMA (wshort = two weeks) applied to
the performance data collected from the HACC workloads
run on Cori is shown in Fig 5. When contrasted with a
time-independent summary statistic such as the overall mean
performance of the entire year, the SMA clearly identifies the
long period of degraded HACC write performance on Cori
that was qualitatively shown in the bottom half of Fig. 3.
The points at which the SMA rises above or below the global

mean performance also provide quantitative measurements of
the region of time when an underlying issue manifested itself;
in Fig. 5, these crossover points fall on March 24 and August
10. Cross-referencing these dates with the service history of
Cori retrospectively revealed that the beginning and end of
this long-term region of divergent performance coincided with
major system software upgrades that also happened on March
24 and August 10.

Curiously, the performance of HACC read workload (Fig.
5b) was unaffected during this time, demonstrating that not
all workloads are affected by long-term variation equally.
This asymmetry, in combination with the bounding dates of
this divergent region, allowed us to trace this specific issue
to unintentional behavior introduced (and later fixed) in the
Lustre software running on Cori between the system upgrades.
Although this particular case of long-term performance diver-
gence was caused by an unexpected bug in system software,
the reality of most production storage systems is that they are
regularly patched and upgraded. At a minimum, the security
requirements of the centers that run these systems drive
system updates; and as exemplified by the recent Spectre and
Meltdown patches, such updates can have nontrivial effects on
certain types of I/O [28]. Thus, administrative activities such
as maintenance patches and software updates are a significant
source of time-dependent, long-term performance variation.
This must be accounted for in both retrospective performance
analysis and forward-looking performance modeling parame-
terization. The ramifications for I/O research practitioners are
that holistic I/O monitoring must incorporate environmental
provenance information, such as kernel, operating system, and
file system version, to aid in correlation.

C. Regions of interest

We can generalize the analysis technique from Section IV-B
by superimposing a second SMA (SMAlong) with a longer
window (wlong ∼ O(weeks)) on top of SMAshort (which
captures variations O(days)). Doing so allows us to examine
short-term performance variations (e.g., a period of sustained
bandwidth contention) in the context of longer-term trends
(e.g., in the presence of a file system software regression).
Once a region of interest has been defined, we can then
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constrain more detailed analysis techniques to that region to
determine why it was defined. The crossover points at which
SMAshort and SMAlong intersect establish the boundaries
of regions where short-term performance has diverged from
longer-term performance and anomalous performance is pre-
vailing. Thus, we introduce the notion of divergence regions,
which are the periods of time bounded by two crossover points
and which capture correlated performance. Figure 6 illustrates
how these concepts are applied to partition data.

For the remainder of this study, we apply the concept
of divergence regions, bounded by the crossovers between
SMAshort and SMAlong , to systematically identify and char-
acterize periods in time where anomalous performance was ob-
served by the active I/O performance probes running across the
test systems. We define SMAshort to have wshort = 14 days
as in Section IV-B and SMAlong to have wlong = 49 days.
We chose w to be a multiple of seven days to align with one
week and ensure that weekends and weekdays were equally
represented in both SMA calculations. wlong was set to seven
weeks to span multiple wshort regions and at least one month
boundary. In our experience, the analysis presented in this
work was insensitive to changes of ±1 week.

In general, we find that financial market technical analysis
techniques can be adapted to time series I/O performance
data to attenuate noise and identify underlying trends. In
the context of financial markets, SMAs (and other more
sophisticated techniques) are used for predictive purposes to
time the execution of market trades. In this study, we are not
applying them to the task of predicting performance, but rather
to identify regions of interest in recorded observations.

V. INVESTIGATING TRENDS

SMA crossover-based partitioning of performance obser-
vations provides a systematic method for grouping time-
correlated performance events. Once a divergence region (i.e.,
a performance trend) has been identified, more focused sta-
tistical analyses can then be applied within the region to gain
insight into the factors that contributed to that trend. Examples
of contributing factors may include resource utilization, system
health, and component performance. In the following analyses,
we separate our 11,986 performance observations into sets
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Fig. 7. Correlation between performance and bandwidth coverage factor in a
divergence region on Mira for all I/O motifs combined. (a) Divergence region
of interest, corresponding to the same highlighted region shown in Fig. 6.
(b) Correlation between performance and bandwidth coverage factor in that
region. Correlation coefficient is 0.507, and p-value is 8.71× 10−9; dashed
line in (b) is a linear fit with slope 0.503 drawn for visual aid.

of observations that all ran on the same test platform (as
described in Table I) to characterize the factors that contribute
to time-dependent, systemic performance variation across dif-
ferent file systems and architectures.

A. Correlative analysis

We begin our correlative analysis by partitioning a year-
long dataset into divergence regions using the method de-
scribed in Section IV-C. Using the performance observations
across all Mira mira-fs1 workloads as an example, we set
wshort = two weeks and wlong = seven weeks to identify di-
vergence regions and then discard any regions with fewer than
three data points. Regions with few data points are discarded
for two reasons: (a) intuitively, very short divergence regions
occur when SMAshort ≈ SMAlong and there is minimal long-
term variation, and (b) statistically, it is impossible to assert the
statistical significance of a correlation with fewer than three
data points. This yields 32 divergence regions.

We then apply Pearson correlation [29] to the feature vectors
within each divergence region to identify the factors that
correlate with its performance trend. The result of this process
is a new feature vector for each divergence region that contains
the correlation coefficients between the fraction of peak perfor-
mance and every other attribute across all observations in that
region. We then use the p-value of each correlation coefficient1

to further down-select the total set of regions to those with
extremely high significance (p-value < 1.0× 10−5). This
threshold yields a total of nine relevant divergence regions on
Mira mira-fs1, which are all depicted as shaded extents in Fig.
6. Each of these nine regions exhibits at least moderate cor-

1The p-value of a correlation coefficient is the probability of observing
data that would show the same correlation coefficient in the absence of any
real relationship between the underlying metrics. A low p-value indicates that
it is extremely unlikely that the calculated correlation coefficient would be
observed if the metrics being compared had no real correlation. As such,
p-values represent the statistical significance of a statistical measurement.
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Fig. 8. Correlations discovered between fraction peak performance and
all other attributes measured during job execution. Each circle represents
the correlation coefficient over a single trend region, and its diameter is
proportional to − log10(p-value). CF denotes coverage factor.

relation (R) ranging from 0.507 to 0.884 with the bandwidth
coverage factor feature.

Figure 7 illustrates the correlation between bandwidth cov-
erage factor and fraction peak performance for a particular
divergence region in November 2017 on Mira mira-fs1. This
example shows the lowest correlation (R = 0.507) with
bandwidth coverage factor of any of the selected regions,
and the scatter plot of performance results shows why:
This region contains a cluster of poorly performing probes
(0.2 < fraction peak perf < 0.4) that ran with a relatively high
bandwidth coverage factor. This region is also the single
largest divergence region observed on Mira; a difference of
over 20% between SMAshort and SMAlong was observed
during this time. This divergence region example highlights
the importance not only of identifying regions and calculating
correlations but also of identifying cases in which the analysis
indicates the presence of an unknown factor that is not
adequately captured by the instrumentation framework.

Despite the unusual region shown in Fig. 7, however, the
data indicates that the time-dependent performance diver-
gences observed on Mira show either moderate or strong corre-
lation with bandwidth contention. Additionally, this correlation
with performance degradation occurs across all I/O motifs
(similar to Fig. 4a), which distinguishes it from the motif-
specific case discussed in Section IV-B.

When the same Pearson correlation is calculated across
the entire collection of Mira mira-fs1 data in the absence
of partitioning, the correlation with the bandwidth coverage
factor yields an overall result of R = 0.483 and p-value =
2.25 × 10−88. Thus, significantly stronger correlations can
be found by focusing analysis on algorithmically identified
regions of interest in the data.

B. Survey of divergence regions

Next we apply the same correlation analysis to the other test
platforms in our study, again keeping only those correlations
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Fig. 9. Regions of negative correlation (red) and positive correlation (blue)
between fraction peak performance and data server load during divergence
regions identified on Cori. SMAs for Cori’s HACC write workload are also
shown to illustrate the coincidence of a long-term performance issue with the
direction of correlation.

with an extremely high significance (p-value < 1.0× 10−5).
The results of this analysis are shown in Fig. 8. As was found
with Mira in Section V-A, a moderate to strong correlation
exists between I/O performance and the bandwidth coverage
factor on the Lustre file systems of Cori and Edison. Although
bandwidth contention resulting in performance loss is intuitive
at the scale of a single performance transient, the fact that
these correlations were found over longer-term divergence
regions indicates that bandwidth contention from sustained,
I/O-intensive workloads often accompanies sustained perfor-
mance losses. This fact is particularly relevant to the increasing
fraction of experimental and observational data that is being
processed on modern HPC platforms; as the volume of data
being continually streamed from large-scale scientific instru-
ments increases, the effects of sustained bandwidth contention
are likely to become increasingly prominent.

Another noteworthy feature that this method reveals is the
bimodality of correlation between performance and the CPU
load of the file system data servers (“Data Server Load” in Fig.
8) on the Lustre-based test platforms. A time-resolved view
of the regions where performance correlates with data server
CPU loads (Fig. 9) reveals that the bimodality of the corre-
lation matches the biomodality observed in the HACC write
workload on the affected storage systems. During the long-
term performance regression discussed in Section IV-B, high
CPU load on the Lustre Object Storage Services coincided
with low performance of the I/O performance probes. As soon
as performance was restored on August 10, the relationship
reversed, and high CPU load was observed favorably with
respect to performance.

The positive correlation between performance and CPU load
is consistent with the data servers using CPUs primarily to
service incoming I/O requests, whereas the negative correla-
tion indicates that another CPU load (as may be caused by
an algorithmic bug) was present and competed with the data
servers’ ability to use CPU to service those same requests.
From these results we conclude that not only does baseline I/O
performance vary with time but also the nature and magnitude
of how different attributes correlate with I/O performance
change over time. Had this correlation analysis been performed
without partitioning over divergence regions, the regions of
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positive and negative correlation would have obfuscated each
other in the net result.

The remaining two attributes that were found to correlate
with performance are file system fullness and open(2)
coverage factor (a measure of metadata resource contention).
The two instances of file system fullness correlating neg-
atively with performance are clear and were corroborated
with independent observations from facilities staff. These
two regions encapsulate periods when their respective file
systems approached 90% fullness for a period of several days.
The observed loss of performance is consistent with Lustre’s
known susceptibility to significant performance degradation as
OSTs approach 90% fullness [30], [1].

The correlation with open(2) coverage factor is intuitive
because this metric acts as a proxy for metadata contention.
One of these divergence regions was found to overlap with
an unusually extensive, long-running multiday purge of the
Edison scratch2 file system. However, at this time the cause
of the other correlated divergence region is unclear. (We will
continue to investigate.)

C. Transient performance loss

In addition to characterizing long-term performance issues,
it is advantageous to determine the reasons why I/O per-
formance is severely degraded for one and only one day in
an otherwise unremarkable period of time. Such performance
losses, indicated by isolated dark blocks in Fig. 4, may be
observed in only one of the I/O performance probes issued on a
given day and suggest a very short-lived issue that disappeared
over the course of one or two of the eight daily probes.
The lack of a consistent performance trend surrounding these
transients makes them difficult to correlate with other metrics
as was done in the preceding section, necessitating a different
approach to characterizing them.

To address this need, we apply the same strategy of par-
titioning performance observations into divergence regions

and then performing statistical analysis within each region.
To identify individual performance anomalies in a divergence
region and classify the factors which contributed to them, we
apply the following binary classification method.
1) We examine the feature vector for every observation in the

divergence region, and for each attribute a we determine
the observation where that attribute’s measured value was
at its lowest, min(a).

2) We then define the anomalous observation for the di-
vergence region as the observation whose feature vector
contains min(a) for fraction peak performance. Since di-
vergence regions contain observations of similar perfor-
mance by definition, this anomalous observation is truly
anomalous—it is differentiated from the long-term perfor-
mance trends described in Sec. IV as well as the ones
within its own divergence region.

3) We then determine which other min(a) values also fall
in this anomalous observation’s feature vector, and we
classify those attributes as contributors to the anomalous
observation’s performance.

Qualitatively, this process codifies the conjecture that if
I/O performance is anomalous on a specific day, the other
measured attributes that were also anomalous at that time are
what contributed to that behavior. Quantitatively, this simple
classification scheme allows us to identify relationships and
define the statistical significance of each classification for
individual anomalous observations using p-values.2

The result of this process is zero or more attributes being
positively classified as contributors to anomalous performance.
For example, if the lowest values of the bandwidth coverage
factor and IOPS coverage factor attributes occur in the same
feature vector as the lowest value for performance, we classify
both bandwidth and IOPS coverage factors as contributors to
that anomalous observation’s performance.

To apply this method, we first group observations into
sets of data by the test platform on which they ran. These
sets are then further subdivided according to I/O motif and
read/write mode of the probe to classify anomalies at full
temporal resolution and motif-level granularity. The net result
are 5 × 4 × 2 = 40 sets of data, each representing a unique
combination of test platform (5×, as listed in Table I), I/O
motif (4×, per Table II), and whether the probe was reading
or writing (2×). Schematically, each horizontal row in Fig. 3
represents a single set. For each set of observations, SMAs
are calculated, crossover points are defined, and the set is
partitioned into a set of divergence regions.

This partitioning results in 1,146 divergence regions across
40 sets of observations. For each such region, we then apply
the aforementioned binary classification to identify anomalous
observations and classify attributes that affected performance.
All statistically insignificant classifications (p-value > 0.10)
are discarded, in order to eliminate divergence regions that

2The p-value is the probability of making a positive classification in the
absence of an underlying relationship or, equivalently, the probability of
positively classifying a random value. Since there is only one min(a) in
each region of N observations, the p-value for our classifications is thus 1

N
.



are too small to make any meaningful classifications. The final
products are 490 anomalous observations, 410 (84%) of which
have at least one positively classified attribute.

Not every observation’s feature vector has every feature
defined as a result of some monitoring components being
offline at the time of a test. To avoid biasing our results away
from those attributes that were measured for only a subset of
observations, we express the importance of each attribute as
the number anomalous observations where it was positively
classified divided by the total number of observations where
it was measured. Figure 10 enumerates the attributes that were
positively classified the most times.

As with the longer-term performance divergence charac-
terized in Section V-B, high contention for bandwidth also
coincides with short-term performance transients. In contrast,
contention for IOPS is positively classified in a significant
fraction of anomalous observations despite its not arising as
a factor in longer-term performance divergence. This con-
trast suggests that IOPS contention becomes a significant
contributor to performance degradation only in short-term
transients. Conversely, we conclude that periods of high IOPS
contention do not last long enough to be implicated in long-
term performance degradation on production file systems,
whereas the same is not true of bandwidth contention. These
are two distinct forms of performance variation that require
unique investigation techniques to uncover.

We also observe the coincidence of anomalous observations
and anomalous metadata coverage factors and CPU load on
data servers to a less significant degree. This is consistent
with the moderate correlations shown in Figure 8. Unlike
the correlative analysis, however, this transient analysis shows
that metadata contention impacts individual jobs on every test
platform, and it is observed at much higher frequency on short
time scales. This indicates that, like IOPS contention, metadata
contention is much more likely to coincide with transient
performance loss than a long-term performance divergence.

Metadata server CPU load, file system fullness, and max-
imum job radius were also classified in some anomalous
observations. However, the low number of anomalous observa-
tions in which they appeared calls into question the statistical
significance of these three findings. To address this result, we
calculate the p-values (the probability of observing the same
number of classifications in the absence of a true underlying
relationship) for each metric using binomial tests.3

These significance tests reveal that the number of times
metadata server load, file system fullness, and maximum job
radius were classified is statistically insignificant. Whereas
the leftmost five attributes in Fig. 10 all have p-values of
5× 10−5 or lower, the insignificant metrics are 0.15 or higher.
Qualitatively, these negative findings are not unreasonable; for
example, file system fullness is most often a degenerative,
long-term health problem, as was identified in Section V-B

3We use one-tailed binomial tests with the number of positive classifications
(k) and total observations (n) for each metric. The fact that our dataset was
filtered to include only regions with p-value < 0.10 allows us to use 0.10 as
a conservative value for the probability of success (p).

and prior work [30], [1]. Thus, while it may coincide with
transient anomalies, it is unlikely to be the sole contributor to
poor performance for a transient anomaly.

The classification process and analysis described here
demonstrate that one can apply statistical analysis to fine-
grained divergence regions and still obtain statistically signif-
icant insight into the causes of transient performance degra-
dation. While we chose a simple binary classification crite-
rion based on min(a), this process could be applied using
any classification methodology that identifies relationships
between feature vectors and quantifies the associated statistical
significance.

VI. FINDINGS AND IMPLICATIONS FOR STATE OF THE
PRACTICE

We found that the combination of systemwide telemetry,
active performance probes, modular data integration, and gen-
eralized analysis tools was highly effective in deriving insight
from otherwise opaque large-scale storage systems. Over the
course of this study we codified successful techniques, such
as adaptations of financial analysis strategies, into our open
source TOKIO framework (see Appendix A) and contribute
to the state of the practice by making this framework readily
available so that the methodology is repeatable on other plat-
forms. Our framework notably decouples analysis techniques
from data integration so that the the same analysis tools can
be reused at any facility once modular connectors have been
added to normalize that facility’s telemetry data.

We also contribute to the state of the practice by uncovering
novel insights into the nature of I/O performance in production
storage systems. In the remainder of this section, we revisit the
most significant outcomes and provide corollaries that improve
the ability for HPC storage practitioners to contextualize,
quantify, and analyze I/O performance variability on large-
scale storage systems.

A. Understanding large-scale storage system behavior

The following findings refine our understanding of how
large-scale storage systems behave at a high level.
• Baseline I/O performance and variability are not con-

stant over time: This observation has direct implications for
our specifications and expectations of system performance.
It is unrealistic to assume that benchmarks performed upon
system delivery will accurately represent performance over
time, and performance expectations must be recalibrated as
storage systems age. We also note that our analysis was not
able to account for all variability; additional work is needed
in both analysis techniques and monitoring.

• Attributes that correlate with transient performance
problems often differ from those that correlate with long-
term performance problems: I/O-intensive workloads in
HPC are widely known to be unusually bursty compared
with other I/O-intensive computing workloads, but this study
demonstrates that some aspects of HPC I/O workloads
(such as IOPS and metadata operations) are more bursty
than others (such as bandwidth utilization). Performance



degradation that results from IOPS or metadata contention is
unlikely to persist for days, whereas bandwidth contention
can result in performance degradation at all time scales.

B. Improving monitoring and telemetric coverage

The following findings motivate further advances in how
large-scale storage systems are monitored and what data
sources are required.
• Administrative activities such as system patches and

updates are a significant source of time-dependent, long-
term performance variation: HPC systems are complex,
and their upgrades may be dictated by external factors
including maintenance schedules, vendor release cycles, and
security disclosures. Thus, capturing explicit measurements
before and after the upgrade process may not be possible.
Continuous monitoring and active probing of performance
mitigate this problem by making such measurements a
routine procedure regardless of upgrade schedule, much in
the same way that continuous integration testing automati-
cally monitors software development processes. Every large-
scale facility incorporates testing procedures into its upgrade
strategy, but this study highlights the need for breadth of
performance testing across workload motifs.

• Holistic I/O monitoring should incorporate environmen-
tal provenance information such as kernel, OS, and file
system versions: This is an obvious finding in retrospect but
is not widely taken into account in current instrumentation
tools. Tools such as Darshan and LMT should capture
sufficient environmental information alongside conventional
performance measurements to aid in correlation between
performance losses and environmental changes.

• Bandwidth contention from sustained, I/O-intensive
workloads often accompanies sustained performance
losses: The impact of bandwidth contention on I/O per-
formance is widely supported in the literature, but this
study demonstrates time-dependent behavior not previously
measured. Detrimental contention can occur over time spans
lasting several weeks (e.g., aggregate workload due to
project allocation timing) and may be driven by factors not
captured by conventional HPC monitoring (e.g., wide area
transfers or archival traffic). This calls for a broadening of
the definition of “holistic I/O characterization” to include not
just the full HPC I/O stack but also the auxiliary resources
that utilize the storage system.

C. Analyzing evolving storage systems

The following findings highlight ways in which the accuracy
and significance of I/O analysis and modeling methodologies
can be improved.
• Significantly stronger correlations can be found by

focusing analysis on algorithmically identified regions
of interest in the data: With the proliferation of machine
learning, it is tempting to apply unguided techniques to a
large data set in a bid to extract meaning from the data set.
However, we have demonstrated that a systems practitioner
will gain more confident insights from targeted analysis of

relevant regions of interest. The region identification method
need not depend on SMAs, and alternative approaches for
both partitioning time series data and classifying the mea-
surements within regions can be easily replaced. The simple
technique we applied here still identified causes of poor
performance in 84% of the jobs that experienced transient
performance loss. Applying more sophisticated classification
methods is likely to improve upon this.

• The nature and magnitude of how different attributes
correlate with I/O performance also change over time:
This observation has critical ramifications for developing I/O
performance models. Models developed from a training set
without temporal context will produce incorrect predictions,
even on the same target system, if external factors have
caused the performance of that system to evolve. For exam-
ple, high CPU load was found to correlate with favorable
performance under healthy file system conditions, yet it
also coincides with unfavorable performance when non-I/O
workloads are impacting storage servers.

• Financial market analysis techniques can be adapted
to I/O performance time series data to attenuate noise
and identify underlying trends: Processing a large, con-
tinuously expanding, and noisy time series data set is
not unique to I/O performance characterization. We found
similarities between our data set and financial market data
that enabled straightforward adaptation of known techniques
and terminology. More advanced market analysis strategies
or strategies from other fields would likely be more effective.

VII. CONCLUSION

Our study of a year in the life of a parallel file system
provided a variety of insights into performance variation on
production systems, including both long-term trends and tran-
sient anomalies. These insights, and the methods that we used
to derive them, have implications for instrumentation methods,
administrative expectations, and analysis techniques. Some
of the recommendations in these findings can be acted on
now by broadening the scope of instrumentation or enhancing
analysis tools based on observations in this paper. Others
more fundamentally motivate the need for “live” analysis of
production systems so that the lessons learned here (especially
those related to dynamic, time-dependent behavior) can be
more generally extracted at any time from a running system
to produce actionable feedback.

Near-term future work calls for the development of ad-
ditional TOKIO connectors to incorporate additional storage
resources such as burst buffers. In the long term, we plan to
develop methods to systematically classify the similarity of
different regions from one another and enable the determina-
tion of broad classes of performance regions. We will also use
the measured data as input for simulation frameworks to enable
the design of potential new file system features or policies that
may reduce the amount of I/O performance variation seen in
production.
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A. Chut, T. Bönisch, J. Lüttgau, R. Michel, and J. Weging, “The
SIOX architecture — coupling automatic monitoring and optimization
of parallel I/O,” in Proceedings of the 29th International Conference on
Supercomputing - Volume 8488, ser. ISC 2014. New York, NY, USA:
Springer-Verlag New York, Inc., 2014, pp. 245–260.

[5] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J. A.
Herdman, I. Miller, A. Vadgama, A. Bhalerao, and S. A. Jarvis, “Parallel
file system analysis through application i/o tracing,” The Computer
Journal, vol. 56, no. 2, pp. 141–155, Feb 2013.

[6] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010. [Online].
Available: https://research.google.com/archive/papers/dapper-2010-1.pdf

[7] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A Multiplatform Study of I/O
Behavior on Petascale Supercomputers,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’15, 2015, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749269

[8] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “Logaider:
A tool for mining potential correlations of hpc log events,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2017, pp. 442–451.

[9] B. H. Park, S. Hukerikar, R. Adamson, and C. Engelmann, “Big data
meets hpc log analytics: Scalable approach to understanding systems
at extreme scale,” 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 758–765, 2017.

[10] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing Variability in the IO Performance
of Petascale Storage Systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’10), no. November. IEEE, nov 2010, pp. 1–12. [Online].
Available: http://ieeexplore.ieee.org/document/5644883/

[11] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On
the Root Causes of Cross-Application I/O Interference in HPC
Storage Systems,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, may 2016, pp. 750–759.
[Online]. Available: http://ieeexplore.ieee.org/document/7516071/

[12] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, p. 8, 2011.

[13] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher,
S. Sundararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti,
C. McCaffrey, G. Grider, P. M. Fields, K. Harms, R. B. Ross,
A. Jacobson, R. Ricci, K. Webb, P. Alvaro, H. B. Runesha,
M. Hao, and H. Li, “Fail-slow at scale: Evidence of hardware
performance faults in large production systems,” in 16th USENIX
Conference on File and Storage Technologies (FAST 18). Oakland,
CA: USENIX Association, 2018, pp. 1–14. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/gunawi

[14] G. K. Lockwood, N. J. Wright, S. Snyder, and P. Carns, “TOKIO
on ClusterStor: Connecting Standard Tools to Enable Holistic I/O
Performance Analysis,” in Proceedings of the 2018 Cray User Group
(CUG’18), 2018.

[15] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and
K. Riley, “24/7 Characterization of petascale I/O workloads,”
in 2009 IEEE International Conference on Cluster Computing
and Workshops. IEEE, 2009, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5289150

[16] S. Snyder, P. Carns, K. Harms, R. Latham, and R. Ross, “Performance
evaluation of Darshan 3.0.0 on the Cray XC30,” Argonne National
Laboratory (ANL), Argonne, IL (United States), Tech. Rep., 2016.

[17] J. Garlick and C. Morrone, “Lustre monitoring tools,” 2010. [Online].
Available: https://github.com/LLNL/lmt

[18] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

[19] S. Byna, M. Howison, and A. Sim, “Parallel I/O Kernel (PIOK) Suite,”
2015. [Online]. Available: https://sdm.lbl.gov/exahdf5/software.html

[20] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
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APPENDIX

A. Abstract

This work demonstrates the benefits of applying active I/O
performance probes with holistic I/O monitoring to identify
the causes of short- and long-term performance variation. This
work is based on four components that can be applied to either
replicate the exact results presented in this study or reproduce
this experiment on a completely new system. To replicate the
exact results, the year-long dataset is required. To conduct this
experiment on an entirely new system, however, the TOKIO
Automated Benchmark Collection is used instead to create a
new input dataset.

1) Year-long dataset: The year-long dataset contains all
feature vectors that were generated during this study and
used to create all figures and findings presented in this work.
The dataset is a CSV file containing 11,986 feature vectors,
each corresponding to a single job and containing up to 220
attributes. Of these attributes, 96 come from application-level
monitoring, 101 come from file system workload monitoring,
21 come from file system health monitoring, 6 come from
resource manager monitoring, and the remainder are job-wide
metadata. The exact number of attributes defined in each
vector depends on what connectors were available on the target
platform at the time the job ran.

2) TOKIO Automated Benchmark Collection (TOKIO-
ABC): TOKIO-ABC is a software repository containing spe-
cific versions of the benchmarks used, scripts that encode
the specific build processes used at NERSC and ALCF, and
the exact input parameters used in all tests. This repository
contains all the necessary code and inputs to generate a
new dataset for a new HPC system. For brevity, the input
parameters are not reproduced here but are provided in the
TOKIO-ABC repository.

3) TOKIO-ABC utilities library (tokio-abcutils): tokio-
abcutils is a Python library upon which the analyses performed
in this study were built. It contains routines for calculating
SMAs from feature vectors and performing each correlation
analysis presented. tokio-abcutils also includes the Jupyter
notebooks that were used to generate all figures in this work.

4) pytokio framework: pytokio [14] is an implementation
of the TOKIO framework that is required by tokio-abcutils. It
is freely available on GitHub4, and the instructions included
in its README are sufficient to meet the requirements of
tokio-abcutils.

B. Description
1) Checklist (artifact metainformation):
• Program: pytokio, TOKIO-ABC, tokio-abcutils
• Compilation: pytokio and tokio-abcutils require no compila-

tion; TOKIO-ABC includes autoconf-based build scripts to aid
in compilation and deployment

• Data set: Features vectors from all 11,986 benchmark runs
• Run-time environment: pytokio and tokio-abcutils require

Python 2.7, pandas 0.23, matplotlib 2.2, numpy 1.13, and scipy
0.19; TOKIO-ABC requires MPI-3.0 and HDF5 1.8.

4https://www.github.com/nersc/pytokio

• Run-time state: No specific state is required a priori.
• Execution: pytokio and tokio-abcutils: command-line tools and

example Jupyter notebooks; TOKIO-ABC: either a continuous
integration system (e.g., Jenkins) or from cron jobs.

• Output: tokio-abcutils: graphical and numerical results of
intermediate analyses; TOKIO-ABC: Darshan logs and job logs

• Experiment workflow: TOKIO-ABC is set up to run automat-
ically via Jenkins, cron, or a similar scheduling tool; pytokio’s
summarize_job [14] tool is used to generate feature vectors;
Jupyter notebooks in tokio-abcutils performs statistical analyses
using these feature vectors.

• Experiment customization: pytokio: via additional TOKIO
connector packages or new analysis tools; tokio-abcutils: by
extending analysis routines and plots in Jupyter notebooks;
TOKIO-ABC: via input decks

• Publicly available?: Yes

2) How software can be obtained (if available): All compo-
nents of TOKIO used in this study are BSD-licensed. pytokio5,
TOKIO-ABC6, and tokio-abcutils7 are available online at the
specific software versions used in this work.

3) Hardware dependencies: There are no specific hardware
dependencies for TOKIO or TOKIO-ABC. There may be
hardware dependencies of the component-level monitoring
tools with which TOKIO integrates, but such tools are not
considered artifacts of this work.

4) Software dependencies:
a) pytokio v0.10.0 and tokio-abcutils v1.0.0: pytokio

and tokio-abcutils require Python 2.7, and the work here
additionally used pandas 0.23.0, matplotlib 2.2.2, numpy
1.13.1, and scipy 0.19.1. For simplicity, we opted to use the
software environment provided by Continuum IO’s Anaconda
version 4.4.7 with the aforementioned four libraries explicitly
upgraded to the stated versions.

pytokio also relies on a number of component-level moni-
toring tools. As described in this paper, TOKIO can integrate
with any tool that provides scalar or time-resolved data types,
and pytokio includes interfaces for the following data sources:

• Darshan 3.1.3
• ggiostat
• LMT (as provided by Neo 2.x on Cray ClusterStor)
• Lustre 2.5.1 (health monitoring via lfs and lctl)
• Slurm 17.02.1-2 and CLE 6.0 (job topology at NERSC)

b) TOKIO-ABC v1.0.0: The Automated Benchmark Col-
lection is a metapackage that contains the specific versions
of each benchmark used, specific patches applied to those
upstream versions, and scripts that configure and build the col-
lection. Its external dependencies are those of the benchmark
applications, which include the following:

• autoconf 2.69 or later
• automake 1.13 or newer
• an MPI 3.0-compliant implementation of MPI
• HDF5 1.8.14
Further details on known issues and specific version incom-

patibilities are documented in the TOKIO-ABC package.

5https://doi.org/10.5281/zenodo.1345790
6https://doi.org/10.5281/zenodo.1345784
7https://doi.org/10.5281/zenodo.1345786



5) Datasets: To validate this work and allow the commu-
nity to build upon our experimental data, the entire year-long
dataset is available online8 and includes the following:

• All feature vectors corresponding to all 11,986 jobs run
over the experimental period

• Unmodified Darshan logs for each TOKIO-ABC job
This CSV dataset represents TOKIO-ABC results from the

five test environments presented: Edison scratch1, scratch2,
scratch3; Cori scratch, and Mira mifa-fs1. The dataset is
labeled with feature names encoded as the first CSV line. The
mapping between feature names and their descriptions is also
documented.

C. Installation

After unpacking the python package source distribution,
installing these libraries is a matter of performing “pip
install -r .”. Build scripts for Mira, Cori, and Edison
are included in the TOKIO-ABC source distribution, and the
specific configure options used for each benchmark are defined
near the top of each script. These scripts should be portable
to any Blue Gene/Q and Cray Linux 6 environment, and
only minor modification should be required to build TOKIO-
ABC on commodity platforms. These build scripts configure,
build, and install the benchmarks within the unpacked source
repository itself, and all of the utility scripts provided assume
this self-contained installation directory structure.

D. Experiment workflow

The tokio-abcutils source repository includes a README
file that describes the experimental workflow in detail. The
following summarizes the workflow.
1) TOKIO-ABC is set up to run the benchmark applications

(HACC, VPIC, BD-CATS, and IOR) daily. This can be
done via any automated scheduling mechanism; NERSC
uses cron, and ALCF uses Jenkins.

2) The summarize_job [14] utility included with pytokio
is used to generate feature vectors for each benchmark
result and save them as CSV-formatted values that can be
read by tokio-abcutils.

3) The tokio-abcutils repository contains the plotting routines,
statistical analysis functions, and Jupyter notebooks to
explore the resulting feature vectors.

Each figure presented in this manuscript is the result of
an analysis notebook that is provided in tokio-abcutils reposi-
tory. Furthermore, tokio-abcutils includes a special subpackage
specific to this manuscript, sc18paper.py, that implements
and describes the specific data filtering used here. For example,
it demonstrates that this paper discounted all jobs whose
Darshan log reflected less than 1 GiB of I/O being performed;
this criterion was required in order to invalidate results from
several days where the BD-CATS binary on Edison was
conflicting with an update to the default HDF5 library on that
system that resulted in BD-CATS performing no actual I/O.

8https://dx.doi.org/10.5281/zenodo.1345780

All components of the analyses presented here (including
the feature vector dataset, pytokio, and tokio-abcutils) have
been tested and confirmed to run on generic UNIX-like
environments outside of NERSC and ALCF (e.g., on standard
MacBooks with macOS 10.13).

E. Evaluation and expected result
The figures presented in this paper can all be regenerated or

manipulated by using the dataset, pytokio, and tokio-abcutils.
The Jupyter notebooks included in tokio-abcutils generate
PDFs or PNG images, and most notebooks also generate
numerical results that can be exported as CSVs.

Detailed documentation for each analysis, its expected in-
puts and outputs, and the analytical methods they apply are
provided as Markdown cells in each notebook. Special care has
been taken to explain each step in each notebook’s analysis
process for the benefit of the authors’ collaboration, but these
notes will also benefit anyone interested in reproducing the
results presented in this work.

F. Experiment customization
Customization can be done by either adding new TOKIO

connectors to interface with different component-level moni-
toring tools or creating new analysis tools which operate on the
year-long dataset. As an example of the former, contributing
a connector that can access traffic counters to burst buffer
file systems (such as collectd for DataWarp [14]) would
allow pytokio, and by extension this work, to provide more
insight into how various factors may contribute to burst buffer
performance in contrast to disk-based parallel file systems.
An example of the latter would be modifying the analysis
notebooks to generate plots for the combinations of systems
and analysis that were not presented in this manuscript because
of space constraints.

The input parameters for each performance probe bench-
mark are defined in .params files in the inputs subdirec-
tory of the TOKIO-ABC repository. These files are simple
text files that specify the desired parallelism, working set
size, and read/write behavior for an individual job on each
line. Application-specific documentation is provided in the
repository; the most common customization is to alter the data
volume and parallelism to suitably stress the underlying file
system without using an excessive amount of core hours.

G. Notes
Significantly more documentation on pytokio, tokio-

abcutils, TOKIO-ABC, and the year-long dataset used in
this study are contained in each repository. For additional
clarity, many of the tools used to generate the figures
for this manuscript are also included as self-documented
Jupyter notebooks. Both pytokio and tokio-abcutils follow the
Google Python Style Guide9. In combination with Sphinx
Autodoc,10 pytokio and tokio-abcutils include extensive self-
documentation of their APIs that can be rendered as PDF- or
HTML-formatted manuals.

9https://google.github.io/styleguide/pyguide.html
10http://www.sphinx-doc.org/en/stable/ext/autodoc.html


