

Illuminating the I/O Optimization Path of
Scientific Applications

Hammad Ather, Jean Luca Bez, Boyana Norris, Suren Byna

ISC HPC 2023

HPC I/O stack – Complex interdependencies among layers

● HPC I/O stack à complex

● Large tuning parameter space

● I/O profiling tools for understanding I/O
performance

3

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Understanding I/O performance – Darshan and DXT

● Darshan is a lightweight HPC I/O profiling tool

● Darshan Extended Trace (DXT)
○ Fine grain view of the application behavior

○ Interface (POSIX or MPI-IO), operation (read/write)
○ MPI Rank, segment, offset, request size
○ Start and end timestamp

● Challenge: How to visualize and extract insights
from DXT data?

○ Identify I/O bottlenecks

○ Optimize the application

5

6

7

More details on Darshan Utilities:
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-
util.html

Missing dots in tuning I/O

● Despite the availability of fine grain
traces
○ Gaps between trace collection, analysis,

and tuning

I/O
Problems

Applying
I/O Tuning

Trace
Collection

if problem persists

?

9

Closing the translation gap

● A solution to close this gap

requires
○ Analysis of collected metrics and traces

○ Diagnosis of root causes of poor

performance

○ Recommend performance improving

solutions

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Trace
Collection

if problem persists

Mapping to
Solutions

10

Envisioning a solution – Based on visualization and guidance

○ Provide interactive visualization based on I/O trace files
○ Display contextual information about I/O calls
○ Understand how the application issues its I/O requests over time
○ Observe transformations as the requests traverse the I/O software stack
○ Detect and characterize the distinct I/O phases of an application
○ Understand how the ranks access the file system in I/O operations
○ Provide an extensible community-driven framework
○ Identify and highlight common root causes of I/O performance problems
○ Provide a set of actionable items based on the detected I/O bottlenecks

11

Drishti: Guiding end-users in the I/O optimization journey

● Sanskrit word; meaning ‘focused gaze’

● Interactive web based log analysis framework to visualize Darshan DXT logs
○ Pinpoint root causes of I/O performance problems

○ Provide a set of actionable recommendations

github.com/hpc-io/drishti-io

docker pull hpcio/drishti

12

HPC Application
Darshan DXT

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Parsing
pyDarshan

https://jeanbez.gitlab.io/isc23

Extracting I/O Behavior from Traces

● Command line solution named darshan-dxt-parser
○ Parsed data -> Textual format -> CSV

● As an alternative, we explore the novel PyDarshan
○ Provides interface to binary Darshan log files -> Pandas dataframe
○ PyDarshan has shortcomings too

■ Loop over all the ranks to get a rectangular structure

13

Interactively Exploring I/O Behavior

● Static plots limited in the information they represent
○ Space constraints
○ Pixel resolution

● We consider two solutions
○ R using ggplot2
○ Python using plotly

● Opted to rely on PyDarshan and plotly
○ Performance speedup
○ Modularity

14

I/O Operations

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated to the POSIX
layer. Visualize relevant information in the context of each I/O call (rank, operation, duration, request size, and

OSTs if Lustre) by hovering over a given operation. 15

Data Transfers

Explore the operations by size in POSIX and MPI-IO. You can, for instance, identify small or metadata operations
from this visualization.

16

Spatiality

Explore the spatiality of accesses in file by each rank with contextual information.
17

Focused Operation View

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated to the POSIX
layer. Visualize relevant information in the context of each I/O call (rank, operation, duration, request size, and

OSTs if Lustre) by hovering over a given operation. 18

Automatic Detection of I/O Bottlenecks

● Variety of tools that seek to
analyze performance
○ Neither provide support for auto detection of I/O

bottlenecks

● Drishti provides framework which
provides
○ Actionable set of recommendations in form of a

report
○ Multi layered plots to diagnose and highlight

bottlenecks

19

Drishti Reports

● Relies on counters available in Darshan profiling logs

● Detects typical I/O performance pitfalls
○ Based on 32 checks covering common I/O performance pitfalls

● Insights classified into four categories
○ HIGH, WARN, OK, INFO

● Provides recommendations in form of a report

20

21

Exploring I/O Phases and Bottlenecks

● I/O phase is a time period where an application is accessing its data

● Factors outside an application’s scope could cause an I/O phase to take longer
○ Network Interference

○ Storage system congestion

● Drishti adds an interactive visualization to detect I/O phases based on DXT trace

data
○ Multi layered plots to detect workload imbalance and rank 0 heavy workload

● Gives a detailed picture of I/O phases and I/O patterns in the data
○ Helpful in extracting information related bottlenecks such as stragglers

22

Exploring I/O Phases and Bottlenecks (contd …)

● Finding I/O phases is not a trivial task due the sheer amount of data
○ Millions of operations in order of milliseconds

● We use PyRanges to find similar and overlapping behavior between ranks
○ PyRanges is a genomics library used for handling genomic intervals

○ Use a threshold value to merge I/O phases closer to each other

● While computing I/O phases, we keep track of the duration between each

I/O phase
○ Threshold to merge I/O phases close to each other

23

Exploring I/O Phases and Bottlenecks (contd …)

Explore the I/O phases of the application. Contextual information like the fastest rank, fastest rank duration,
slowest rank, and slowest rank duration are available when hovering over an I/O phase.

24

Exploring I/O Phases and Bottlenecks (contd …)

● I/O stragglers in each phase could define a critical path impairing

performance

● Exclusive plot to highlight the I/O phases and fast and straggler in each

phase
○ Handle each interface separately

● Detect slow ranks across the entire execution or storage servers

25

Stragglers

Explore the stragglers in the entire execution. Upon hovering over a phase, all the information related to the fastest and
slowest rank is shown. The dotted lines represent the start and the end of a phase

26

File System Usage

● DXT captures information related to the storage servers

● Drishti provides a visualization to explore the OST usage of

the I/O requests

● Also provides a visualization to depict data transfer sizes for

each OST

27

Towards Exploring File System Usage (contd …)
● The plots show

○ Very small data transfer for OST# 238 for MPI IO
■ Size increases at POSIX due to transformations as the request goes through the stack

○ OST# 213 is most used for MPI IO
○ OST# 238 is the least used across both MPI IO and POSIX

28Explore the file system usage for the entire execution. The plot on the left shows OST usage data transfer sizes and the plot on the
right shows OST usage of I/O requests over time

Putting Drishti into practice

● Demonstrate Drishti to identify I/O performance bottlenecks

● Experiments conducted at:
○ Cori at NERSC

○ Summit at OLCF

● Four use cases:
○ OpenPMD

○ AMReX

○ E2E (available in companion repo)

○ H5Bench Write (available in companion repo)

● Used h5bench to generate the benchmarks

29

I/O Bottlenecks in OpenPMD

● Open Standard for Particle Mesh Data Files (OpenPMD)
○ Particle and mesh data in scientific simulations and experiments

● Summit with 64 compute nodes, 6 ranks per node, and a total of 384 MPI

ranks
○ Mesh size is [65536 ⨉ 256 ⨉ 256], 10 iterations

● For this scenario, OpenPMD takes an average 110.6 seconds

30

I/O Bottlenecks in OpenPMD

● Majority of the read and write requests are small
○ I/O calls are not using the MPI-IO’s collective option

31

I/O Bottlenecks in OpenPMD

● Moreover, Drishti detected an imbalance
when accessing the data

32

I/O Bottlenecks in OpenPMD - optimized
● Collective HDF5 metadata were not actually collective due to an issue introduced in HDF5 1.10.5

○ Fixed that issue by using HDF5 1.10.4 (or using 1.10.6 or later) and enabling collective metadata I/O
● Drishti suggested larger buffer sizes

○ Used ROMIO hints to set the aggregators to 1 agg/node and set the cb_buffer_size to 16 MB
○ Used GPFS large block I/O

● With HDF5 1.10.4 combined with other optimizations gives a total of 6.8x speedup from baseline

33

110.6s

16.1s

6.8x

Improving AMReX with Asynchronous I/O

● AMReX is an adaptive mesh refinement (AMR) framework
○ Solves partial differential equations on block-structured meshes

○ Used by several applications in the Exascale Computing Project (ECP)

● I/O benchmark on Cori with 32 compute nodes, 512 ranks
○ 1024 domain size, 10 plot files, 10 seconds sleep time between writes

34

Improving AMReX with Asynchronous I/O (contd …)

● The report suggests using
○ Larger buffer sizes
○ Asynchronous I/O VOL connector

35

Consider buffering write operations into
larger more contiguous ones

Since you use HDF5, consider using the
ASYNC I/O VOL connector
(https://github.com/hpc-io/vol-async)

Improving AMReX with Asynchronous I/O (contd …)

● Added asynchronous I/O VOL Connector
○ Makes the operations non blocking
○ Hide time spent in time I/O while the application continues its computation

● Majority of request sizes are very small (< 1MB) for all the 10 plot files
○ Set stripe size to 16MB

36

211

100

2.11x

Future Work

● Integrate additional metrics and system logs to broaden the spectrum of I/O issues
○ Global API to consume metrics from distinct sources e.g. Recorder

● Map performance optimization recommendations to the exact source code line

numbers
○ Static code analysis

○ Modified code instead of generic snippets in Drishti reports

● Community guidelines on how to contribute to this tool
○ Aid in keeping up with the latest advancements in I/O libraries and systems

○ Reach out to novel systems for support

37

Conclusion

● Pinpointing root causes of I/O inefficiencies requires:
○ Detailed metric analysis

○ Understanding of the HPC I/O stack

● Drishti is an interactive web based analysis framework which
○ Seeks to close the gap between trace collection, analysis, and tuning

○ Automatically detects common root causes of I/O performance inefficiencies

○ Provides actionable recommendations to the user

● Applicability demonstrated with optimization of OpenPMD and AMReX applications

● Companion Repository: https://jeanbez.gitlab.io/isc23

39

Contact: Suren Byna
https://sbyna.github.io Thanks to:

https://jeanbez.gitlab.io/isc23

Illuminating the I/O Optimization Path of
Scientific Applications

Hammad Ather, Jean Luca Bez, Boyana Norris, Suren Byna

