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I/O – A critical tool for data storage and access
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§ Simulations
• Multi-physics (FLASH) – 10 PB
• Cosmology (NyX) – 10 PB
• Plasma physics (VPIC) – 1 PB

§ Experimental and observational data (EOD)
• LHC (100 PB), 
• LSST (60 PB), 
• Genomics (100 TB to 1 PB)

FLASH

NyX

VPIC

LHC

LSST

Genomics

Storage and I/O software and hardware are critical for 
storing and accessing these massive amounts of data.



Architectural trends impacting I/O on HPC systems – deep memory 
and storage hierarchy
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High bandwidth memory (HBM)

CPU / GPU / FPGA memories

Storage class memory

Node-local SSD storage

SSD-based storage system

HDD-based storage system

Long-term storage (Tape, 
remote data repositories)
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Parallel I/O – A stack of software libraries and hardware
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High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)



I/O phases could be slow and slowdown applications
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• Many large-scale applications have distinct compute and I/O phases
• Simulations checkpoint state or save visualization data 

• EQSIM (earthquake simulator), Nyx and Castro (adaptive mesh refinement, 
cosmological hydrodynamics)

• Machine learning training iteratively reads data
• Cosmoflow (3D convolutional neural network)



Asynchronous I/O to the rescue

• Hiding I/O latency by overlapping with computation à
Common async I/O approach
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Synchronous I/O

Asynchronous I/O



Asynchronous I/O – Implemented in several I/O libraries

• POSIX
• MPI-IO
• ADIOS
• Data Elevator and ARCHIE
• Proactive Data Containers (PDC)
• HDF5
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A systematic study of benefits and limitations of asynchronous I/O is lacking



Asynchronous I/O Scenarios

• Computation phase, Overhead for setting up async I/O, I/O latency
• Scenarios

• Longer computation phases than I/O latency
• Shorter computation phases than I/O latency
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a) Compute Time > I/O Time b) Compute Time < I/O Time c) Compute Time <= Overhead



Latency with asynchronous I/O
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Depends on an implementation of async I/O
• Background threads
• Extra buffering
• Communication for buffering
• Shared computation and communication 

resources
• Pressure on file system and I/O from other 

jobs



Asynchronous I/O in HDF5 – Intro to Virtual Object Layer (VOL)

• VOL allows “intercepting” HDF5 public API and implementing a 
different approach to storage and access
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HDF5 API

…

…
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Asynchronous I/O in HDF5 – Using background threads

• A pass-through VOL connector for implementing asynchronous I/O
• Asynchronous task queue
• Transparent background thread execution
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Explicit Control with Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);

• H5ESclose(es_id);
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Converting Existing HDF5 Codes

13Detailed description in https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-async


Async HDF5 VOL Connector – Benefits
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Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna, "Transparent Asynchronous Parallel I/O using 
Background Threads", IEEE TPDS - Special Section on Innovative R&D toward the Exascale Era, 2021



Questions for a detailed evaluation

• For computation phases longer than I/O phases, async I/O is 
beneficial
• What about other conditions?

• When does asynchronous I/O slow down applications?

• Can we predict synchronous and asynchronous I/O time to decide 
on using them?
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Experimental evaluation

• Systems
• Summit at OLCF with ~4k nodes with 

GPFS Parallel File system 
• Cori at NERSC with ~12k nodes with 

Lustre Parallel File System

• Estimation of I/O cost
• Empirical model using linear 

regression
• Aggregate bandwidth scales with data 

size, # ranks for each I/O request
16



Benchmarks and Applications

• VPIC-IO 
• A data write benchmark, extracted from a plasma physics simulation

• BD-CATS-IO
• A read benchmark, extracted from a clustering analysis code

• Nyx
• A massively parallel, adaptive mesh, cosmology simulation code

• Castro
• A cosmology simulation solving compressible radiation & hydrodynamics equations

• EQSIM 
• A regional earthquake simulation code

• Cosmoflow
• A deep learning code to process large 3D matter distributions using CNN

17https://github.com/hpc-io/h5bench



Configurations

I/O kernel / App Data dimensions Other notes

VPIC-IO 8 variables, 210 particles 1D HDF5 dataset

BD-CATS-IO Any number of given variables, 210 particles Same as VPIC-IO, read pattern

Nyx Small: 256x256x256, every 20 time steps 20 MB data per time step

Large: 2048x2048x2048 dimensions, every 50 
time steps

10 GB data per time step

Castro 128x128x128 dimensions with 6 components in 
each multi-fab and 2 particles per cell

128 MB data per time step

EQSIM Grid size of 50 with 30000x30000x17000 
dimensions; checkpoint every 100 time steps

Computation phases are often very 
long compared to checkpointing phases

Cosmoflow 1283 Voxels dataset, 4 epochs and with batch 
size of 8

Computation on GPUs, data for I/O is 
transferred to main memory before 
CPU performs I/O. 
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Estimation of I/O cost

• Each point represents a separate run at a different time

• Synchronous I/O varies in performance (about 2 orders of magnitude at high node count)

• History of best achieved bandwidth
19

VPIC-IO on Summit



Weak scaling tests on Summit and Cori
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• The aggregate bandwidth scales similarly on both systems for both synchronous and 
asynchronous epochs

• Analytical model fits well with the trend of synchronous write aggregate bandwidth 
which is based on a linear-log regression



Strong scaling tests on Summit and Cori
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Nyx-large

Castro

Nyx-small

Castro

• The async I/O overhead is low with smaller amount of data (with increasing number of 
ranks), increases async I/O rate on Summit

• On Cori, for smaller data size (Nyx-small configuration), increasing scale doesn’t 
increase I/O rate much. Async I/O still much better than sync I/O



EQSIM and Cosmoflow – Async I/O wins significantly
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EQSIM on Summit – Synchronous 
I/O slows down with scale. Async 
I/O is effective.

Cosmoflow on Summit with GPUs 
– Synchronous I/O slows down 
after 128 nodes. Async I/O is 
effective (includes GPU to CPU 
memory copy overhead)



Frequent I/O phases with async I/O slows down 
applications
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• Checkpointing every timestep with asynchronous I/O enabled resulted in an overall slowdown 

• Extra overhead introduced with asynchronous I/O could not be hidden 

• Requires a dynamic decision at runtime to enable Asynchronous I/O

(Nyx on Cori)



Conclusions

• Asynchronous I/O can hide I/O latency in cases where 
computation > async overhead + I/O time
• Analytical models for estimating I/O latency using linear 

regression to evaluate efficacy of async I/O
• Model-based automatic selection of async I/O à in progress
• Other Async I/O optimizations

• Combine multiple small I/O requests à ESSA 2023 paper
• Multi-dataset I/O in HDF5 to reduce the number of I/O requests
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Contact: Suren Byna – https://sbyna.github.io Async I/O with HDF5: 
https://github.com/hpc-io/vol-async



Back up slides
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Results: Sod

• Sod is a compressible flow explosion problem widely used 
for verification of shock-capturing simulation codes.

• 3D Sod problem with tracer particles. 

• Each runs for 109 steps, writes a checkpoint file every 33 
steps, a plot file every 10 steps, and compared the total 
execution time with 5 different configurations that uses 
Synchronous and Asynchronous I/O, with and without 
MPI_THREAD_MULTIPLE, and using GPFS and UnifyFS. 

• For cases with async, the majority of the write operations 
are overlapping with Flash-X’s computation. Exceptions 
include the initial data writes and the last step as there is no 
computation to overlap with.

*SC22 | Dallas, TX | hpc accelerates. 26

Rajeev Jain, Houjun Tang, Akash Dhruv, Austin Harris, Suren Byna, Accelerating 
Flash-X Simulations with Asynchronous I/O, PDSW 2022



Results: Streaming Sine Wave
• The streaming sine wave test problem is a test 

problem for verifying the correctness of the 
streaming advection operator in thornado as 
well as the Flash-X interface to thornado.

• This problem uses GPU  and CPU (threading). 

• One GPU per MPI rank, and the data is copied 
from GPU to CPU memory automatically by 
FLASH-X before being written out

• At a higher number of nodes the interference 
between COM_ time and IO_ is higher as the 
I/O time as a whole increases: it is 27.1% for 
the 256-node synchronous case.

*SC22 | Dallas, TX | hpc accelerates. 27

The total time required by synchronous I/O increases with 
increasing number of nodes. This is due to the fact that

communication is time-consuming and the GPFS file-
system write operation does not scale well.



Results: Deforming Bubble Problem

• This is a benchmark problem for multiphase CFD applications in Flash-X. The 
deformation is computed by level-set advection and redistancing algorithm.

• For results shown in Fig. 6, the number of bubbles per MPI process is varied.  
Fig. 1 shows bubble undergo deformation under a velocity field.

• For the 64-node case the I/O time as a percentage of the total simulation time 
goes down from 22.3% to 4.7%. 

• For the 256-node case,  the I/O time is significantly higher for the synchronous 
case; this is due to the fact that a lot of communication is required to write the 
file to disk from 256 nodes (or 5,376 MPI ranks) and the GPFS file system on 
Summit does not scale well. 

• The asynchronous I/O time for 256 nodes remains the same as for other 
cases, but the Com_  time has increased because a greater percentage of 
Com_ time overlaps with IO_ time.

*SC22 | Dallas, TX | hpc accelerates. 28


