
John Ravi, Suren Byna, and Michela Becchi

North Carolina State University, The Ohio State University, and Lawrence 
Berkeley National Laboratory

Runway: In-transit Data Compression on 
Heterogeneous HPC Systems



Scientific data storage and access – Many sources of inefficiency

2

Simulations Experiments

Observations

Files

Parallel file systems, 
archives

Object stores, Data 
lakes, warehouses, etc.

File systems, archives, 
etc.

Cloud
High performance 
computing (HPC) 
centers

Data repositories

Data 
producers

Data 
movement

Data 
storage

Data 
movement

Files

HPC centers

Laptops

Data to insight (visualizations, analyses)

CloudInefficiency 
and burden



Trends in computing devices

• Heterogeneous processing devices
• CPUs
• GPUs
• FPGAs
• Special purpose accelerators

• Data processing units (DPUs)
• Smart SSDs
• Smart NICs

• Massive concurrency
• Locations of data generation and consumption

• Traditional: In compute nodes
• Trends: In network, in storage, and at the edge

Image from D. Vasudeven, via J. Shalf, 
Extreme Heterogeneity workshop report

DPUs

3



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?

4



Analysis paradigms

Store

Access

Data producer

Memory

Data consumer

Memory

Post-processing

Data producer

Memory

Data consumer

Memory

In-situ analysis 

Transfer

Store

5



In-transit / in-flight analysis

Store

Access

Data producer

Memory

Data consumer

Memory

Post-processing

Data producer

Memory

Analysis 
function

Register

Runtime system

Data 
movement

In-flight analysis

Memory

Schedule 
analysis

Compute 
nodes

Storage w/ 
Compute

6

Data producer

Memory

Data consumer

Memory

In-situ analysis 

Transfer

Store



In-transit data compression 

HDD

HDF5
Dataset

Checksum 
Filter

Compression 
Filter

• Focus on compression 
• Decrease storage and bandwidth 

requirements for applications 
• Current I/O middleware
• HDF5 Filters allow in-transit compression
• HDF5 has no policy to map compute to a 

particular device
• Shared environments—need a daemon 

to monitor device utilization, cost to 
transfer data

7



Proactive Data Containers (PDC)

• Object-centric abstraction with a runtime 
system for data movement orchestration
• Autonomous data management
• Proactive use of memory hierarchy

• Support for extracting information from 
data
• Information management
• Simulation time analytics
• Interaction among multiple datasets

HDF5

Ap
p

Ap
p

Ap
p

…

PDC API

PDC client interface

PDC Runtime services

M
et

ad
at

a 
M

an
ag

er

Da
ta

 o
bj

ec
t &

 fi
le

 
m

an
ag

er

Da
ta

 tr
an

sfo
rm

 a
nd

 
an

al
ys

is

Ap
p

Qu
er

y m
an

ag
er

Lustre GPFS

Da
ta

 a
cc

es
s 

an
al

yz
er

Da
ta

 p
re

fe
tc

he
r

Co
ns

ist
en

cy
 

m
an

ag
er

8



Container

Objects

Proactive Data Containers - object abstraction

PDC organizes 
data as a set of 
objects within a 
Container

Object is a generic 
term to describe byte 
streams in an 
abstract manner

Region is the basic 
and fine-grain unit 
for data movement 
operations in PDC

9



Proactive Data Containers - object operations

• No explicit data movement
• Object mapping

• Data movement operations implicit
• Similar to mmap()
• Transform

• Concurrent access
• Explicit lock operation per region
• Unlocked region = data movement can 

occur from/to that region

• Primitives: map/unmap & transfer
(wait for completing a transfer)

App Memory

Burst-Buffer

Disk

Mapping + 
Transform

Mapping + 
Transform

10https://github.com/hpc-io/pdc



Runway for in-transit transforms (compression)

• Simplified interface: register 
compression variants

• Active monitoring: dynamic 
resource mapping on 
available devices (CPU, 
GPU, DPU)

• Region-based compression: 
more compressibility, higher 
throughput

11



Runway analysis framework in PDC

• Runway analysis registration relies on the data movement infrastructure 
consisting of Clients + Servers + Mercury RPC + function registration APIs
provided by Proactive Data Containers (PDC)

Analysis Registration:
PDCobj_analysis_register(“user-defined-analysis-function”, input1_iter, 
result1_iter);
Transform Registration:
PDCregion_transform_register(“pdc_transform_compress”, &x[0], region_x, 
obj_xx, region_xx, 0, INCR_STATE, DATA_OUT);



Experimental setup – Platforms and workloads

• SDRBench — scientific data reduction benchmark from authors of SZ
• Includes data for visualization and application checkpoints
• We developed a proxy write benchmark for each dataset  

13

Datasets from SDRBenchSystem Configuration



Data compression stages

• Lossless compressors
• Zlib (LZ + Huffman)
• Zstd (LZ + FSE)

• Lossy compression methods
• ZFP—fixed-rate, fixed-precision
• MGARD—MultiGrid Adaptive Reduction of Data
• SZ—Modular Error-bounded Lossy Compression Framework

14

SZ algorithm



Experimental Setup - DPU

15

https://network.nvidia.com/files/doc-2020/pb-bluefield-2-
dpu.pdf

• NVIDIA Bluefield-2
• NIC accelerator— 2x25Gbps
• Arm Cortex A72, 16GB DDR4
• OS—Ubuntu 20.04 
• API—NVIDIA DOCA v1.5.1
• Legacy API—DPDK (Intel Data Plane 

Development Kit)



Experimental Setup - DPU

16

https://network.nvidia.com/files/doc-2020/pb-bluefield-2-
dpu.pdf

• NVIDIA Bluefield-2
• NIC accelerator— 2x25Gbps
• Arm Cortex A72, 16GB DDR4
• OS—Ubuntu 20.04 
• API—NVIDIA DOCA v1.5.1
• Legacy API—DPDK (Intel Data Plane 

Development Kit)
• Uses DEFLATE accelerator on DPU (LZ77 + 

Huffman coding)



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?

17



Compression performance with DPU

18

Hurricane ISABEL, QVAPOR data object

• DPDK_ZLIB utilizing the DPU DEFLATE Accelerator is 27X faster than ZLIB



Data Compression on different devices – CPU, GPU, and DPU

• Comparison of different variants of SZ—GPU is fastest

19

Hurricane ISABEL, QVAPOR data object



Emulated computation to keep CPU and GPU busy –
BBP-π

• Bailey-Borwein-Plouffe algorithm for calculating π
• Calculate the n-th hexadecimal digit of π without calculating the first n − 1 digits
• Scales linearithmically, O(n log n)
• Parallel implementation (OpenMP, CUDA)—each thread computes a digit

20

{16!𝜋} = {4{16!𝑆"} − 2{16!𝑆#} − {16!𝑆$} − {16!𝑆%}}

{16!𝑆"} = {{ ∑
#$%

! 16!&#𝑚𝑜𝑑8𝑘 + 𝑗
8𝑘 + 𝑗 } + ∑

#$!'(

!'(%% 16!&#

8𝑘 + 𝑗}



In-transit Data Compression - Static resource mapping

• Co-running BBP-π and QVAPOR-IO kernel
• Green: QVAPOR-IO runs on CPU
• Blue: QVAPOR-IO runs on GPU
• Purple: QVAPOR-IO runs on DPU 

21



In-transit data compression – Static resource mapping

22

Hurricane ISABEL, QVAPOR data object• Co-running BBP-π and QVAPOR-IO kernel
• Green: QVAPOR-IO runs on CPU
• Blue: QVAPOR-IO runs on GPU
• Purple: QVAPOR-IO runs on DPU 



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?

23



In-transit analysis cost prediction

• Polynomial regression solved using non-linear least squares

24

Data SizeDevice UtilizationMeasured 
compute time

• Goal—based on previous runs, predict analysis (compression) time



Modeling compression time on CPU

25

CPU (Intel Xeon) on 
testbed

CPU (AMD Epyc) on 
Perlmutter

𝑟! = 0.96 𝑟! = 0.99



Estimating compression cost on GPU

26

GPU (NVIDIA A30) 
on testbed

GPU (NVIDIA A100) on 
Perlmutter

𝑟! = 0.6 𝑟! = 0.5



Compression cost on GPU with varying utilization

• Co-run BBP-π and QVAPOR-IO kernel both sharing the same resource (NVIDIA A30 GPU). 
• We vary the BBP-π duration to vary the GPU utilization (X-axis). 
• Compression cost increases with increasing GPU utilization (Y-axis)
• The estimated time using prediction is shown as a dotted line.

27



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?

28



Region-based data compression

• Perform compression at region level 
versus object level

• Motivation: Non-uniform 
compression parameters to improve 
performance on low entropy regions

29

QRAIN from Hurricane ISABEL Dataset



Region-based data compression

30

QRAIN from Hurricane ISABEL Dataset

• Perform compression at region level 
versus object level

• Motivation: Non-uniform 
compression parameters to improve 
performance on low entropy regions



Region-based data compression – speed vs. compression ratio

• Each 3072x3072x32 region is 
~1GB
• Some regions have 0 entropy

• SZ_BEST_COMPRESSION—
Lossless enabled
• SZ_BEST_SPEED—

Lossless disabled

31

Density, Data Object with dimensions 3072x3072x3072
Miranda Dataset



Region-based data compression at large scale

• Per-region compression is advantageous – between 15% and 20% for an S3D dataset

32

Pressure, Data Object from S3D dataset

Weak-scaling problem:
Data size increases with the
number of ranks



Conclusions
• How would accelerators benefit data analysis or transforms?

• For data compression, GPUs often provide good performance
• When GPUs are busier than 75%, DPUs can help

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?
• Predicting compression cost on CPUs is accurate. 
• On GPUs, prediction model works well for large datasets when the compression cost is 

high

• Is non-uniform compression on different regions of the data 
beneficial?
• Region-based compression accuracy is beneficial

• Future work
• Offload overhead on future DPUs may be less

33Contact: Suren Byna – https://sbyna.github.io

Thanks to:

https://github.com/hpc-io/pdc


