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Scientific data storage and access – Many sources of inefficiency
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Trends in computing devices

• Heterogeneous processing devices
• CPUs
• GPUs
• FPGAs
• Special purpose accelerators

• Data processing units (DPUs)
• Smart SSDs
• Smart NICs

• Massive concurrency
• Locations of data generation and consumption

• Traditional: In compute nodes
• Trends: In network, in storage, and at the edge

Image from D. Vasudeven, via J. Shalf, 
Extreme Heterogeneity workshop report

DPUs
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Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?
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Analysis paradigms
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In-transit / in-flight analysis
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In-transit data compression 

HDD
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• Focus on compression 
• Decrease storage and bandwidth 

requirements for applications 
• Current I/O middleware
• HDF5 Filters allow in-transit compression
• HDF5 has no policy to map compute to a 

particular device
• Shared environments—need a daemon 

to monitor device utilization, cost to 
transfer data
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Proactive Data Containers (PDC)

• Object-centric abstraction with a runtime 
system for data movement orchestration
• Autonomous data management
• Proactive use of memory hierarchy

• Support for extracting information from 
data
• Information management
• Simulation time analytics
• Interaction among multiple datasets
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Container

Objects

Proactive Data Containers - object abstraction

PDC organizes 
data as a set of 
objects within a 
Container

Object is a generic 
term to describe byte 
streams in an 
abstract manner

Region is the basic 
and fine-grain unit 
for data movement 
operations in PDC
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Proactive Data Containers - object operations

• No explicit data movement
• Object mapping

• Data movement operations implicit
• Similar to mmap()
• Transform

• Concurrent access
• Explicit lock operation per region
• Unlocked region = data movement can 

occur from/to that region

• Primitives: map/unmap & transfer
(wait for completing a transfer)

App Memory

Burst-Buffer

Disk

Mapping + 
Transform

Mapping + 
Transform

10https://github.com/hpc-io/pdc



Runway for in-transit transforms (compression)

• Simplified interface: register 
compression variants

• Active monitoring: dynamic 
resource mapping on 
available devices (CPU, 
GPU, DPU)

• Region-based compression: 
more compressibility, higher 
throughput
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Runway analysis framework in PDC

• Runway analysis registration relies on the data movement infrastructure 
consisting of Clients + Servers + Mercury RPC + function registration APIs
provided by Proactive Data Containers (PDC)

Analysis Registration:
PDCobj_analysis_register(“user-defined-analysis-function”, input1_iter, 
result1_iter);
Transform Registration:
PDCregion_transform_register(“pdc_transform_compress”, &x[0], region_x, 
obj_xx, region_xx, 0, INCR_STATE, DATA_OUT);



Experimental setup – Platforms and workloads

• SDRBench — scientific data reduction benchmark from authors of SZ
• Includes data for visualization and application checkpoints
• We developed a proxy write benchmark for each dataset  
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Datasets from SDRBenchSystem Configuration



Data compression stages

• Lossless compressors
• Zlib (LZ + Huffman)
• Zstd (LZ + FSE)

• Lossy compression methods
• ZFP—fixed-rate, fixed-precision
• MGARD—MultiGrid Adaptive Reduction of Data
• SZ—Modular Error-bounded Lossy Compression Framework
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SZ algorithm



Experimental Setup - DPU
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https://network.nvidia.com/files/doc-2020/pb-bluefield-2-
dpu.pdf

• NVIDIA Bluefield-2
• NIC accelerator— 2x25Gbps
• Arm Cortex A72, 16GB DDR4
• OS—Ubuntu 20.04 
• API—NVIDIA DOCA v1.5.1
• Legacy API—DPDK (Intel Data Plane 

Development Kit)



Experimental Setup - DPU
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https://network.nvidia.com/files/doc-2020/pb-bluefield-2-
dpu.pdf

• NVIDIA Bluefield-2
• NIC accelerator— 2x25Gbps
• Arm Cortex A72, 16GB DDR4
• OS—Ubuntu 20.04 
• API—NVIDIA DOCA v1.5.1
• Legacy API—DPDK (Intel Data Plane 

Development Kit)
• Uses DEFLATE accelerator on DPU (LZ77 + 

Huffman coding)



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?
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Compression performance with DPU
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Hurricane ISABEL, QVAPOR data object

• DPDK_ZLIB utilizing the DPU DEFLATE Accelerator is 27X faster than ZLIB



Data Compression on different devices – CPU, GPU, and DPU

• Comparison of different variants of SZ—GPU is fastest
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Hurricane ISABEL, QVAPOR data object



Emulated computation to keep CPU and GPU busy –
BBP-π

• Bailey-Borwein-Plouffe algorithm for calculating π
• Calculate the n-th hexadecimal digit of π without calculating the first n − 1 digits
• Scales linearithmically, O(n log n)
• Parallel implementation (OpenMP, CUDA)—each thread computes a digit
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In-transit Data Compression - Static resource mapping

• Co-running BBP-π and QVAPOR-IO kernel
• Green: QVAPOR-IO runs on CPU
• Blue: QVAPOR-IO runs on GPU
• Purple: QVAPOR-IO runs on DPU 
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In-transit data compression – Static resource mapping
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Hurricane ISABEL, QVAPOR data object• Co-running BBP-π and QVAPOR-IO kernel
• Green: QVAPOR-IO runs on CPU
• Blue: QVAPOR-IO runs on GPU
• Purple: QVAPOR-IO runs on DPU 



Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?
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In-transit analysis cost prediction

• Polynomial regression solved using non-linear least squares
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Data SizeDevice UtilizationMeasured 
compute time

• Goal—based on previous runs, predict analysis (compression) time



Modeling compression time on CPU
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CPU (Intel Xeon) on 
testbed

CPU (AMD Epyc) on 
Perlmutter

𝑟! = 0.96 𝑟! = 0.99



Estimating compression cost on GPU
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GPU (NVIDIA A30) 
on testbed

GPU (NVIDIA A100) on 
Perlmutter

𝑟! = 0.6 𝑟! = 0.5



Compression cost on GPU with varying utilization

• Co-run BBP-π and QVAPOR-IO kernel both sharing the same resource (NVIDIA A30 GPU). 
• We vary the BBP-π duration to vary the GPU utilization (X-axis). 
• Compression cost increases with increasing GPU utilization (Y-axis)
• The estimated time using prediction is shown as a dotted line.
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Research questions

• How would accelerators benefit data analysis or transforms?
• While data is moving between memory and storage

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?

• Is non-uniform compression on different regions of the data 
beneficial?
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Region-based data compression

• Perform compression at region level 
versus object level

• Motivation: Non-uniform 
compression parameters to improve 
performance on low entropy regions
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QRAIN from Hurricane ISABEL Dataset



Region-based data compression
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QRAIN from Hurricane ISABEL Dataset

• Perform compression at region level 
versus object level

• Motivation: Non-uniform 
compression parameters to improve 
performance on low entropy regions



Region-based data compression – speed vs. compression ratio

• Each 3072x3072x32 region is 
~1GB
• Some regions have 0 entropy

• SZ_BEST_COMPRESSION—
Lossless enabled
• SZ_BEST_SPEED—

Lossless disabled
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Density, Data Object with dimensions 3072x3072x3072
Miranda Dataset



Region-based data compression at large scale

• Per-region compression is advantageous – between 15% and 20% for an S3D dataset
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Pressure, Data Object from S3D dataset

Weak-scaling problem:
Data size increases with the
number of ranks



Conclusions
• How would accelerators benefit data analysis or transforms?

• For data compression, GPUs often provide good performance
• When GPUs are busier than 75%, DPUs can help

• Can we predict data transform (compression) cost on CPUs and 
GPUs to design a scheduler?
• Predicting compression cost on CPUs is accurate. 
• On GPUs, prediction model works well for large datasets when the compression cost is 

high

• Is non-uniform compression on different regions of the data 
beneficial?
• Region-based compression accuracy is beneficial

• Future work
• Offload overhead on future DPUs may be less

33Contact: Suren Byna – https://sbyna.github.io
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