
John Ravi, Suren Byna, Quincey Koziol, Houjun Tang, and Michela Becchi

North Carolina State University, The Ohio State University,
and Lawrence Berkeley National Laboratory

Evaluating Asynchronous Parallel IO on HPC Systems

I/O – A critical tool for data storage and access

2

§ Simulations
• Multi-physics (FLASH) – 10 PB
• Cosmology (NyX) – 10 PB
• Plasma physics (VPIC) – 1 PB

§ Experimental and observational data (EOD)
• LHC (100 PB),
• LSST (60 PB),
• Genomics (100 TB to 1 PB)

FLASH

NyX

VPIC

LHC

LSST

Genomics

Storage and I/O software and hardware are critical for
storing and accessing these massive amounts of data.

Architectural trends impacting I/O on HPC systems – deep memory
and storage hierarchy

3

High bandwidth memory (HBM)

CPU / GPU / FPGA memories

Storage class memory

Node-local SSD storage

SSD-based storage system

HDD-based storage system

Long-term storage (Tape,
remote data repositories)

Ca
pa
ci
ty

Pe
rf
or
m
an
ce

In
 c

om
pu

te
 n

od
e

O
ff

co
m

pu
te

 n
od

e

Ra
nd

om

ac
ce

ss

Fi
le

-b
as

ed
 a

cc
es

s

Co
st

Parallel I/O – A stack of software libraries and hardware

4

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

I/O phases could be slow and slowdown applications

5

• Many large-scale applications have distinct compute and I/O phases
• Simulations checkpoint state or save visualization data

• EQSIM (earthquake simulator), Nyx and Castro (adaptive mesh refinement,
cosmological hydrodynamics)

• Machine learning training iteratively reads data
• Cosmoflow (3D convolutional neural network)

Asynchronous I/O to the rescue

• Hiding I/O latency by overlapping with computation à
Common async I/O approach

6

Synchronous I/O

Asynchronous I/O

Asynchronous I/O – Implemented in several I/O libraries

• POSIX
• MPI-IO
• ADIOS
• Data Elevator and ARCHIE
• Proactive Data Containers (PDC)
• HDF5

7

A systematic study of benefits and limitations of asynchronous I/O is lacking

Asynchronous I/O Scenarios

• Computation phase, Overhead for setting up async I/O, I/O latency
• Scenarios

• Longer computation phases than I/O latency
• Shorter computation phases than I/O latency

8

a) Compute Time > I/O Time b) Compute Time < I/O Time c) Compute Time <= Overhead

Latency with asynchronous I/O

9

Depends on an implementation of async I/O
• Background threads
• Extra buffering
• Communication for buffering
• Shared computation and communication

resources
• Pressure on file system and I/O from other

jobs

Asynchronous I/O in HDF5 – Intro to Virtual Object Layer (VOL)

• VOL allows “intercepting” HDF5 public API and implementing a
different approach to storage and access

10

HDF5 API

…

…

All Other
HDF5
Routines

Pa
ss
-t
hr
ou

gh
Te
rm

in
al

Virtual
Object
Layer
(VOL)

Operations on a Container

HDF5 Library
Infrastructure

N
at
iv
e

As
yn
ch
ro
no

us

DA
O
S

RE
ST

He
rm

es

Ca
ch
in
g

Tr
ac
in
g

In
de

pe
nd

en
t

M
et
ad
at
a

Co
nn

ec
to
rs

Asynchronous I/O in HDF5 – Using background threads

• A pass-through VOL connector for implementing asynchronous I/O
• Asynchronous task queue
• Transparent background thread execution

11

Explicit Control with Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);

• H5ESclose(es_id);

12

Converting Existing HDF5 Codes

13Detailed description in https://github.com/hpc-io/vol-async

https://github.com/hpc-io/vol-async

Async HDF5 VOL Connector – Benefits

14

Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna, "Transparent Asynchronous Parallel I/O using
Background Threads", IEEE TPDS - Special Section on Innovative R&D toward the Exascale Era, 2021

Questions for a detailed evaluation

• For computation phases longer than I/O phases, async I/O is
beneficial
• What about other conditions?

• When does asynchronous I/O slow down applications?

• Can we predict synchronous and asynchronous I/O time to decide
on using them?

15

Experimental evaluation

• Systems
• Summit at OLCF with ~4k nodes with

GPFS Parallel File system
• Cori at NERSC with ~12k nodes with

Lustre Parallel File System

• Estimation of I/O cost
• Empirical model using linear

regression
• Aggregate bandwidth scales with data

size, # ranks for each I/O request
16

Benchmarks and Applications

• VPIC-IO
• A data write benchmark, extracted from a plasma physics simulation

• BD-CATS-IO
• A read benchmark, extracted from a clustering analysis code

• Nyx
• A massively parallel, adaptive mesh, cosmology simulation code

• Castro
• A cosmology simulation solving compressible radiation & hydrodynamics equations

• EQSIM
• A regional earthquake simulation code

• Cosmoflow
• A deep learning code to process large 3D matter distributions using CNN

17https://github.com/hpc-io/h5bench

Configurations

I/O kernel / App Data dimensions Other notes

VPIC-IO 8 variables, 210 particles 1D HDF5 dataset

BD-CATS-IO Any number of given variables, 210 particles Same as VPIC-IO, read pattern

Nyx Small: 256x256x256, every 20 time steps 20 MB data per time step

Large: 2048x2048x2048 dimensions, every 50
time steps

10 GB data per time step

Castro 128x128x128 dimensions with 6 components in
each multi-fab and 2 particles per cell

128 MB data per time step

EQSIM Grid size of 50 with 30000x30000x17000
dimensions; checkpoint every 100 time steps

Computation phases are often very
long compared to checkpointing phases

Cosmoflow 1283 Voxels dataset, 4 epochs and with batch
size of 8

Computation on GPUs, data for I/O is
transferred to main memory before
CPU performs I/O.

18

Estimation of I/O cost

• Each point represents a separate run at a different time

• Synchronous I/O varies in performance (about 2 orders of magnitude at high node count)

• History of best achieved bandwidth
19

VPIC-IO on Summit

Weak scaling tests on Summit and Cori

20

• The aggregate bandwidth scales similarly on both systems for both synchronous and
asynchronous epochs

• Analytical model fits well with the trend of synchronous write aggregate bandwidth
which is based on a linear-log regression

Strong scaling tests on Summit and Cori

21

Nyx-large

Castro

Nyx-small

Castro

• The async I/O overhead is low with smaller amount of data (with increasing number of
ranks), increases async I/O rate on Summit

• On Cori, for smaller data size (Nyx-small configuration), increasing scale doesn’t
increase I/O rate much. Async I/O still much better than sync I/O

EQSIM and Cosmoflow – Async I/O wins significantly

22

EQSIM on Summit – Synchronous
I/O slows down with scale. Async
I/O is effective.

Cosmoflow on Summit with GPUs
– Synchronous I/O slows down
after 128 nodes. Async I/O is
effective (includes GPU to CPU
memory copy overhead)

Frequent I/O phases with async I/O slows down
applications

23

• Checkpointing every timestep with asynchronous I/O enabled resulted in an overall slowdown

• Extra overhead introduced with asynchronous I/O could not be hidden

• Requires a dynamic decision at runtime to enable Asynchronous I/O

(Nyx on Cori)

Conclusions

• Asynchronous I/O can hide I/O latency in cases where
computation > async overhead + I/O time
• Analytical models for estimating I/O latency using linear

regression to evaluate efficacy of async I/O
• Model-based automatic selection of async I/O à in progress
• Other Async I/O optimizations

• Combine multiple small I/O requests à ESSA 2023 paper
• Multi-dataset I/O in HDF5 to reduce the number of I/O requests

24

Contact: Suren Byna – https://sbyna.github.io Async I/O with HDF5:
https://github.com/hpc-io/vol-async

Back up slides

25

Results: Sod

• Sod is a compressible flow explosion problem widely used
for verification of shock-capturing simulation codes.

• 3D Sod problem with tracer particles.

• Each runs for 109 steps, writes a checkpoint file every 33
steps, a plot file every 10 steps, and compared the total
execution time with 5 different configurations that uses
Synchronous and Asynchronous I/O, with and without
MPI_THREAD_MULTIPLE, and using GPFS and UnifyFS.

• For cases with async, the majority of the write operations
are overlapping with Flash-X’s computation. Exceptions
include the initial data writes and the last step as there is no
computation to overlap with.

*SC22 | Dallas, TX | hpc accelerates. 26

Rajeev Jain, Houjun Tang, Akash Dhruv, Austin Harris, Suren Byna, Accelerating
Flash-X Simulations with Asynchronous I/O, PDSW 2022

Results: Streaming Sine Wave
• The streaming sine wave test problem is a test

problem for verifying the correctness of the
streaming advection operator in thornado as
well as the Flash-X interface to thornado.

• This problem uses GPU and CPU (threading).

• One GPU per MPI rank, and the data is copied
from GPU to CPU memory automatically by
FLASH-X before being written out

• At a higher number of nodes the interference
between COM_ time and IO_ is higher as the
I/O time as a whole increases: it is 27.1% for
the 256-node synchronous case.

*SC22 | Dallas, TX | hpc accelerates. 27

The total time required by synchronous I/O increases with
increasing number of nodes. This is due to the fact that

communication is time-consuming and the GPFS file-
system write operation does not scale well.

Results: Deforming Bubble Problem

• This is a benchmark problem for multiphase CFD applications in Flash-X. The
deformation is computed by level-set advection and redistancing algorithm.

• For results shown in Fig. 6, the number of bubbles per MPI process is varied.
Fig. 1 shows bubble undergo deformation under a velocity field.

• For the 64-node case the I/O time as a percentage of the total simulation time
goes down from 22.3% to 4.7%.

• For the 256-node case, the I/O time is significantly higher for the synchronous
case; this is due to the fact that a lot of communication is required to write the
file to disk from 256 nodes (or 5,376 MPI ranks) and the GPFS file system on
Summit does not scale well.

• The asynchronous I/O time for 256 nodes remains the same as for other
cases, but the Com_ time has increased because a greater percentage of
Com_ time overlaps with IO_ time.

*SC22 | Dallas, TX | hpc accelerates. 28

