
Runway: In-transit Data Compression on
Heterogeneous HPC Systems

John Ravi
North Carolina State University

Raleigh, NC, USA
jjravi@ncsu.edu

Suren Byna
The Ohio State University

Columbus, OH, USA
byna.1@osu.edu

Michela Becchi
North Carolina State University

Raleigh, NC, USA
mbecchi@ncsu.edu

Abstract—To alleviate bottlenecks in storing and accessing data
on high-performance computing (HPC) systems, I/O libraries are
enabling computation while data is in-transit, such as HDF5
filters. For scientific applications that commonly use floating-
point data, error-bounded lossy compression methods are a crit-
ical technique to significantly reduce the storage and bandwidth
requirements. Thus far, deciding when and where to schedule
in-transit data transformations, such as compression, has been
outside the scope of I/O libraries.

In this paper, we introduce Runway, a runtime framework that
enables computation on in-transit data with an object storage
abstraction. Runway is designed to be extensible to execute user-
defined functions at runtime. In this effort, we focus on studying
methods to offload data compression operations to available
processing units based on latency and throughput. We compare
the performance of running compression on multi-core CPUs, as
well as offloading it to a GPU and a Data Processing Unit (DPU).
We implement a state-of-the-art error-bounded lossy compression
algorithm, SZ3, as a Runway function with a variant optimized
for DPUs. We propose dynamic modeling to guide scheduling
decisions for in-transit data compression. We evaluate Runway
using four scientific datasets from the SDRBench benchmark
suite on a the Perlmutter supercomputer at NERSC.

Index Terms—Object Data Management, In-transit Computa-
tion, Heterogeneous Resources

I. INTRODUCTION

Current high-performance computing (HPC) systems pro-
cess massive amounts of data. These systems are built with
high performance interconnects and parallel file systems to
support data intensive workloads. Such workloads not only
consume, but can also produce large amount of data for
post-processing, such as analysis or visualization. In addition,
since large-scale simulations often run for multiple hours or
even days, these applications typically checkpoint state over
some specified duration. Managing data movement can quickly
become a barrier to perform scientific research at scale.

Solutions to manage persisted data for large-scale appli-
cations can range from using high-level I/O libraries, such
as HDF5 [1] and ADIOS2 [2], to application-specific frame-
works, such as AMReX native I/O [3]. Application developers
typically prefer the I/O libraries, since they offer performance
portability while keeping the application code maintainable.
These libraries aim to abstract the specifics of the system
architecture, parallel file system parameters, and data format.
However, current I/O libraries have complex APIs and tuning

methods to make efficient use of storage. This motivates a
need for simpler I/O libraries, e.g., pMEMCPY [4].

In addition to abstracting optimizations, many high-level
I/O libraries provide a way to define and perform computa-
tions or transformations while data is being moved between
memory and storage. For example, HDF5 [1] offers filters,
while ADIOS2 [2] offers plugins. These extensions enable
developers to extend the I/O libraries with new features, which
others can use and optimize for their needs. For example,
scientific data reduction is an actively researched feature to
enable better bandwidth and storage utilization [5]. Although
useful, we believe the current development and integration of
these features in widely used I/O libraries is still limited. For
example, popular I/O libraries offer limited resource handling
and scheduling capabilities, which can be critical to high
performance applications. Other optimization techniques, such
as asynchronous I/O and compression filters, are offered by
existing I/O libraries (e.g., HDF5), but are limited to per-
application task scheduling. Understanding when to apply a
transformation and what system resources to use has been out
of scope for I/O libraries.

Recent research has explored the ability to directly read
and write to storage from Graphics Processing Units (GPUs).
This eliminates the need to buffer data on system memory and
frees up CPU cycles to perform other critical tasks. NVIDIA
provides driver support to enable I/O to NVMe and NVMe-oF
through GPUDirect Storage (GDS) [6]. GDS enables lower
I/O latency due to less data transfers. It also allows higher
aggregate bandwidth with multiple storage targets not needing
to be serialized through a CPU-backed memory buffer. I/O
libraries have begun exploring how to support GPUs directly
in the data path [6].

The complexity of data management solutions is further
increased by the use of accelerators found in many modern
HPC systems. In the exascale era of HPC, many applications
rely on GPUs as general compute accelerators. Programming
heterogeneous computing resources on HPC systems (i.e.,
CPUs and GPUs) is tricky due to different design consider-
ations. While multi-core CPUs rely on large caches, GPUs
use smaller caches and rely on the programmer to optimize
memory accesses. GPUs support concurrent execution of or-
ders of magnitude more threads which helps to hide memory
access latency. With these design considerations, it is often

difficult to provide I/O functionality that can optimally use
CPUs and GPUs. Moreover, future systems might see even
more specialized accelerators, each with specific algorithm
design considerations.

Data Processing Units, or DPUs [7], are becoming more
popular for various use cases in HPC systems and data centers.
Typically, DPUs are equipped with CPUs and specialized
accelerators to offload network-related tasks such as filtering.
Offloading I/O and data management tasks to the DPU frees
up compute cycles on the host DPU which can be used by the
application. Programmers and I/O libraries can take advantage
of specialized hardware on the DPU to perform tasks, such as
data compression, to further accelerate data movement.

In this work, we investigate the dynamic integration of
in-transit data transformation and analysis capabilities in I/O
libraries. This requires mechanisms to transparently map and
schedule data transformation tasks on available processing
resources, and adapt the data transformation parameters to
the characteristics of the data. Our proposed mapping and
scheduling policy considers the following factors: current and
target data location, data transfer costs, and available process-
ing units. We propose Runway, a configurable and extensible
runtime system for in-transit data processing. Runway builds
on top of the Proactive Data Containers (PDC) system [8],
[9], a data management framework with a client-server design
that offers an object storage abstraction. In PDC, data to
be persisted are stored in objects, which are partitioned in
data regions handled by different PDC servers. As example
data transformation task we consider lossy compression, and
explore setting the compression error bound adaptively to
different partitions of a data object for balancing accuracy and
performance.

In summary, we make the following contributions:
• A GPU- and DPU-aware runtime framework enabling

computation on in-transit data. Our system, called Run-
way, performs dynamic mapping of data transformation
tasks on available compute resources, while adaptively
setting the data transformation parameters (e.g., compres-
sion error bound) based on the data;

• A dynamic resource mapping scheme based on a cost
model taking into account factors such as resource avail-
ability and overlapping of compute and data movement;

• An adaptive compression scheme with per-region tuning.
We evaluate Runway on Perlmutter, a state-of-the-art large-

scale cluster at NERSC, equipped with AMD EPYC CPUs
and NVIDIA A100 GPUs to demonstrate the I/O scalability.
We also evaluate Runway on a smaller testbed system that
has an NVIDIA A30 GPU and an NVIDIA Bluefield-2 DPU
to showcase our proposed dynamic resource mapping scheme
across diverse accelerators.

II. BACKGROUND AND MOTIVATION

A. Data Management Software Libraries
Data management software, including high-level and mid-

dleware I/O libraries, enables portable performance optimiza-
tions across systems and application domains. Popular I/O

libraries, such as HDF5, offer a self-describing file format that
provides an abstraction layer to manage the data and metadata
within a single file [1]. HDF5 filters enable compression of
data using a filters approach, where compression is executed
on CPUs. A user needs to manually enable and tune the
compression method to their application needs. Nonetheless,
HDF5 feature set can be extended using Virtual Object Layer
(VOL) and Virtual File Driver (VFD). The HDF5 VOL feature
has been used to implement an asynchronous I/O VOL connec-
tor that enables asynchronous I/O for HDF5 operations using
background threads [10]. The scope of this feature, however, is
limited to a single application. Currently, HDF5 exists only as
a compiled library with no runtime system that arbitrates I/O
tasks among multiple applications. Adding a daemon-based
runtime system to HDF5 will require significant rework of
core library functionality to ensure proper metadata handling.

Proactive Data Containers, or PDC [8], [9], is a data
management framework, which offers a data object-focused
abstraction instead of a file-based storage abstraction. It is im-
plemented as a runtime system with a set of data management
services to perform automatic data movement and metadata
search. PDC implements a client-server architecture with a
set of servers managing data movement across applications.
Hence, this framework enables better resource handling es-
pecially in workflow-based applications. Although, arbitrarily
increasing the concurrency capacity of PDC with application
instances and data servers can have diminishing performance
improvement. Figure 1 reports the results of an experiment
where we progressively increase the number of PDC data
server instances, with each data server running the QVAPOR-
IO compression kernel on in-transit data. As can be seen, the
system reaches a maximum throughput before saturating the
multi-core CPU, and increasing the number of PDC server
instances beyond 5 is not beneficial to performance.

1 2 3 4 5 6
Instances of QVAPOR-IO and PDC Server(s)

0

100

200

Th
ro

ug
hp

ut
 (M

B
/s

)

0.25

0.50

0.75

C
P

U
 U

til
iz

at
io

n

CPU Utilization

Fig. 1: Data transfer throughput can saturate when a hardware
resource is fully utilized. This data transfer performs ZFP
compression in-transit while persisting the QVAPOR data
object of the Hurricane ISABEL dataset.

PDC currently lacks the extensibility found in other I/O
libraries, such as HDF5. In this work, we build Runway
on top of PDC’s client-server design; thus, Runway inherits
PDC’s data object abstraction. We propose a novel way of
supporting dynamic features, focusing on compression on
in-transit data and scheduling to compute accelerators, such
as GPUs and DPUs. Supporting dynamic features is critical
to enable researchers to integrate their work in production
applications. The client-server design allows us to decouple

2

application parallelism with I/O parallelism. The current de-
sign of HDF5 filters only supports parallelism with number
of MPI ranks the application launches. Moreover, there is no
support to perform the computation asynchronously. Runway
demonstrates a need to support asynchronous computation and
better resource management. We compare Runway’s dynamic
resource mapped in-transit compression to the current state-
of-the-art in-transit compression, namely, HDF5 filters.

B. Hardware Accelerators

Recent work on I/O libraries have also explored supporting
hardware accelerators in the data path. HDF5 exposes low-
level I/O operations through the virtual file driver (VFD). Since
many applications utilize GPUs for compute, HDF5 had added
support for GPUDirect Storage (GDS) through the GDS VFD
[6]. GPUDirect Storage eliminates the need to buffer data
in system memory. GPUs can support computations at very
high throughput compared to a multi-core CPUs. Thus, GPU
compression with GPUDirect Storage can be used to accelerate
I/O throughput [11].

Developers often want to schedule I/O tasks on idle hard-
ware, so they do not contend with resources used by more
critical computations, such as CPUs and GPUs. For example,
PDC reserves a core on each compute node for its data
servers. In this work, we consider offloading data management
servers to the DPU. We also explore taking advantage of
the DPU’s specialized compression accelerator to increase the
lossy-based compression throughput.

C. Scientific Data Reduction

Recent work on error bound lossy compression, such as
ZFP [12] and SZ [5], has shown that scientific data reduction
can yield high compression ratios and still maintain high
quality thresholds. Moreover, these data transforms can be
implemented efficiently by using high throughput parallel
resources, including multicore CPUs and GPUs [13]. These
recent developments enable I/O libraries to take advantage of
scientific data reduction to improve I/O latency and reduce I/O
bandwidth.

The effectiveness of data reduction can depend on multiple
factors, including error bounds and entropy of the data. For
example, data intended for visualization can tolerate larger
error bounds. Larger error bounds allow lossy compression
to dramatically reduce data size at the cost of losing some
result quality, typically measured with peak signal-to-noise
ratio (PSNR). Figure 2 shows how varying the absolute error
bound can impact compression ratio, compression latency, and
compression quality. See Section IV for more information
about the experimental setup. Recent efforts have begun ex-
ploring automatically tuning these error bounds [14], [15].

However, for sparse scientific data, the effectiveness of
data reduction methods might not be uniformly beneficial at
a global data object. For example, object data can contain
multiple temporal and spatial data regions. Each of the regions
might have different characteristics, leading to different error
bounds. Recent work has begun exploring the need for a

locally tuned error bound [16]. For example, in Figure 3 we
show a data object (QRAIN) from the Hurricane ISABEL
dataset. This data object is of dimensions 100x500x500 as
shown on the top row of the figure. Because this data object
contains both a temporal and spatial dimension, it is a 3
dimensional data object, where the first object indicates the
timestep. Analysis is distributed across discrete grids, or data
regions, indicated as 100x100 regions in the bottom 3 figures.
Some data regions yield much higher compression ratios than
others. In this paper, we demonstrate the benefits of supporting
a non-uniform compression scheme in I/O middleware.

III. THE RUNWAY FRAMEWORK

We design Runway to be a novel object data management
service that supports in-transit computation. As mentioned
above, Runway builds on the design of an existing object data
management service, i.e., Proactive Data Containers (PDC)
[8]. Similar to PDC, our framework targets large-scale appli-
cations and systems. Because our goal aligns well with PDC’s
using a server for scheduling in-transit computations and to
perform asynchronous I/O, we use PDC as the base frame-
work. Current and upcoming large-scale systems leverage
heterogeneous resources to push computing limits. Runway
aims to simplify the application developer’s effort to manage
data in the context of heterogeneous resources. To use our
framework, application developers need to replace calls to
existing I/O functionality with a simplified data management
API. Using a distributed client-server model, Runway can
move data in and out of the application memory address space
asynchronously using remote procedure calls (RPCs).

In Figure 4 we show the high-level design of the Run-
way framework. Runway uses Mercury, a high performance
RPC library that facilitates data movement through Remote
Memory Access (RMA) [17]. Mercury enables low overhead
communication and fast data transfer for large-scale systems.
Application developers can register Runway lambdas, which
are computation operations on data that would be executed
in-transit. Runway lambdas are mapped and scheduled on the
available compute resources at runtime. We describe each of
these features in detail in the following sections.

A. Supporting Object Data Model

Runway implements an object data model used in PDC.
Data are organized as a collection of objects inside containers.
Each object is composed of a binary blob and metadata,
including a name, ID, dimensions, time of data generation,
ownership, etc [8]. Large objects are partitioned into smaller
regions that are defined by starting offsets in the object,
element counts, and data sizes. A region is the primary way to
interface with data; it can reside in any layer of the memory
hierarchy (i.e., GPU memory, CPU memory, NVMe, disk,
etc.) [9]. This approach enables a simple programming model
to interface with data while relying on a flexible runtime to
support a deep memory hierarchy. In this paper, we build
on this object data model abstraction to enable an extensible
computation framework.

3

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

20

40

60
C

om
pr

es
si

on
 R

at
io

sz2
sz3

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

0.60

0.65

0.70

0.75

C
om

pr
es

si
on

 T
im

e
(s

)

sz2
sz3

0.0 0.1 0.2 0.3 0.4 0.5
(Absolute) Error Bounds

50

60

70

80

P
S

N
R

 (d
B

)

sz2
sz3

(a) QCLOUD-IO from Hurricane ISABEL

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

0

200

400

C
om

pr
es

si
on

 R
at

io

sz2
sz3

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

4

6

C
om

pr
es

si
on

 T
im

e
(s

)

sz2
sz3

10
1

10
0

10
1

10
2

10
3

(Absolute) Error Bounds

80

100

120

140

160

P
S

N
R

 (d
B

)

sz2
sz3

(b) Nyx-Temperature-IO from Nyx

Fig. 2: Comparison of the performance of the SZ2 and SZ3 compression algorithms on two applications from SDRBench.
The left plots shows how compression ratio (Y-axis) increases with higher absolute error bound (X-axis). The center plots
show how the same error bounds (X-axis) can impact compression time. The right plots show how the quality metric, PSNR
(Y-axis), varies with the absolute error bound.

Fig. 3: Hurricane Isabel QRAIN data object with dimensions
100x500x500. The top two plots show the entire 500x500 data
object at simulation timesteps 0 and 100, respectively. The
bottom six plots show the first three 100x100 data regions in
the x-direction for bottom simulation timesteps.

B. Supporting In-transit Computations

The Runway framework supports computations, or oper-
ations on data that is in memory. There are two types of
lambdas: data transformations and data analysis. Data trans-
formations are defined as operations that change the input

Fig. 4: Overview of Runway which is implemented using a
client-server model.

data in some way. Examples of data transformations include
compression, decompression, encryption, and decryption. Data
analysis produces some new results based on the input. Anal-
ysis functions include computing statistical summaries (min,
max, histograms, etc.) of a region. Analysis functions can
also include calculating the data entropy of a dataset, a useful
metric for data reduction.

In addition to the built-in lambdas, Runway is designed to
be extensible with user-defined plugins. A common interface
exists for registering computation functions. Client-sided com-
putations operate on region-only data, whereas server-sided
computations operate on object-level data. The region-only
data are mapped to the application process address space, so no
new data need to be accessed. However, data objects can span
multiple data locations, such as across memories of distributed
compute nodes. Thus, accessing data objects requires the use
of data iterators to fetch data blocks.

A computation function can have multiple variants. For
example, multiple approaches currently exist to perform scien-

4

tific data reduction. The most suitable compression method to
use depends heavily on the application and its data. Moreover,
each compression function might have different hardware-
specific implementations. To capture this, Runway allows for
multiple variants to be registered for a computation function.
There are two types of interfaces for a computation function:
Direct and Iterative. The direct interface supports region-
based functions, while the iterative interface supports object-
based functions. The direct interface is a straightforward
method to operate on in-transit data. Data are passed to the
direct interface function as a function argument through an
opaque pointer. Additionally, metadata about the data region
are passed through function arguments. The iterative interface
allows computation to operate on entire data objects without
needing to map to a smaller region. Since data objects can be
very large, and often exceed the memory capacity, data can
be traversed with iterators. In this case, the function argument
is composed of a data iterator that is used to retrieve the next
data block. The runtime will transparently retrieve data blocks
that might reside in the working memory of another node in
the distributed data server.

C. Supporting Heterogeneous Resources

Our runtime is built to take advantage of accelerators in
HPC systems. For computations, multiple variants can be
registered where each variant targets a different resource.
We can have a variant that is optimized for performing the
computation on the CPU and another on the GPU. This allows
the Runway system to decide which resource to utilize to
perform the computation.

1) GPU: Graphics processing units (GPUs) enable process-
ing data at very high throughput. Recent work has explored
directly interacting with data stored in the file system with
GPUs. Runway enables using the GPU as a data movement
accelerator. We support this by offloading computation, includ-
ing data transformations and data analysis, to the GPU when
compatible code variants are registered.

Figure 6 shows the performance differences between SZ
running on a recent data center CPU and cuSZ (i.e., a
CUDA implementation of SZ) running on recent data center
GPUs. We measure the overall compression throughput of
using an A30 GPU to be 2.5 GB/s. Although this is 2-3x
higher throughput than a multi-threaded CPU implementation,
GPU execution incurs the additional cost for transferring data
between the host and device memory.

2) DPU: Data processing units (DPUs) are typically used
in data centers to offload networking and communication tasks
from the host CPU. A SmartNIC is a type of network interface
card (NIC) that includes a programmable CPU that executes
the offloaded tasks. In this paper, we use the terms DPU and
SmartNIC interchangeably to refer to the NVIDIA Bluefield-2
device. This DPU includes an ARM Cortex-A72 CPU meant
to handle less compute intensive tasks, and Runway’s worker
instances can be fully offloaded to it. The Bluefield-2 DPU
also includes specialized accelerators for specific tasks, such as

data compression and hashing. Future versions of the Bluefield
DPU are planned to include a GPGPU as well.

To understand the performance from offloading a computa-
tion to the DPU, we profile a popular compression algorithm
on real-world scientific data. As expected, we found the
embedded ARM core on the DPU to be much slower than the
host CPU, especially for multi-threaded workloads. However,
the Bluefield-2 board includes a special-purpose accelerator of
DEFLATE, a lossless data compression algorithm that uses a
combination of LZ77 algorithm and Huffman coding. Lossy
compression algorithms make use of lossless compression as
the last step, which we found to be a bottleneck. We devised
a variant of SZ that uses ZLIB (DEFLATE), which can be
offloaded to the DEFLATE accelerator found on the Bluefield-
2 device.

D. Supporting Asynchronous Tasks

More complex computations can add latency to data op-
erations. Also, data transfers to discrete memory found on
accelerators can impose extra latency. In order to avoid de-
creasing the overall application throughput, we implement an
asynchronous event system. To automate targeting computa-
tion variants for different heterogeneous resources, Runway
uses a task scheduler. The task scheduler uses a simple cost
model that takes into account the overall latency to perform
an in-transit computation. We define the overall latency to
include the time to transfer the data to and from an accelerator
memory, as shown in Equation 1.

tlatency = th2d time + tcompute + td2h time (1)

The data transfer latency can be calculated based on the
peak interconnect bandwidth and data size. For synchronous
I/O, we keep a running average of past compute kernels’
execution time. This is sufficient to statically map to resources.
However, when we overlap an I/O phase with compute (asyn-
chronous I/O), the challenge of avoiding contention due to
oversubscribing resources becomes an issue. Thus, we propose
an empirical model to estimate the execution time of an in-
transit computation based on runtime data, such as tracking
device utilization during execution. We define “device utiliza-
tion” as the percentage of time spent busy over a sampling
period.

To estimate the compute latency of performing an in-transit
compression, we find a correlation between device utilization,
data size, and compression latency. Equation 2 shows a cubic
polynomial which takes two input variables, xi,0 (device
utilization) and xi,1 (data size) to predict the compression
latency yi. The i parameter represents an index into the past
history of previous measurements. Using least squares of a
cubic polynomial, we can fit a line of best fit for the data
collected on each device. Each device we fit this model to
will have a different set of β0, β1, β2, and β3.

fest compute =⇒ yi = β0 ∗ x3
i,0 + β1 ∗ x2

i,1 + β2 ∗ xi,1 + β3 (2)

5

TABLE I: System Configuration

Testbed
Two-node system

NERSC Perlmutter
Large scale cluster

CPU 2x Intel Xeon ES-2530 v4,
10-Core

AMD EPYC 7763
64-Core

RAM 126GB DDR4 256GB DDR4
GPU NVIDIA A30 PCIe 24GB NVIDIA A100 SXM4 40GB
DPU NVIDIA Bluefield-2 -
OS Ubuntu 18.04.5 SUSE Linux 15
Drivers NVIDIA Driver 515.48.07, CUDA 11.7

TABLE II: Benchmarks used for Evaluation

Dataset Data Objects Entropy Dimensions Mem. Req.

Nyx Temperature 23.99 512x512x512
Single Precision 512 MB

Hurricane
ISABEL

QCLOUD 1.30 100x500x500
Single Precision 100 MBQRAIN 21.45

QVAPOR 24.19

QMCPACK QMCPack
(einspline) 26.08 115x69x69x28

Single Precision 612 MB

S3D Pressure 26.77 500x500x500
Double Precision 1 GB

Miranda Density 22.5
96 regions of

3072x3072x3072
Single Precision

106 GB

In summary, the dynamic resource mapping scheme uses a
cost matrix that takes into account the following parameters: 1.
current data location, 2. transfer costs, 3. target data location,
and 4. available compute units. We use empirical data from
past runs to refine the model for future operation.

IV. EXPERIMENTAL SETUP

With a mixture of I/O kernels, computation kernels, and real
world data from scientific applications, we evaluate Runway
on a testbed system and a large-scale cluster. In this section,
we describe the systems and benchmarks in detail.

A. System Configuration

Perlmutter is a pre-exascale supercomputing system with
200 petaflops (PF) performance located at OLCF [18]. It is
composed of 1,536 GPU nodes and 3072 CPU nodes. Each
GPU-accelerated node features four NVIDIA A100 GPUs and
one AMD ”Milan” EPYC 7763 CPU. The memory subsystem
in each GPU node includes 40GB of HBM2 per GPU and
256GB of host DRAM. Each CPU node features two AMD
EPYC CPUs with 512GB of memory per node. The entire
compute system is connected to a HPE Cray’s ClusterStor
E1000 storage with 35 PB of storage space. It is an all-flash
file system, built on a Lustre file system, with an aggregate
bandwidth of > 5 TB/sec and 4 million IOPS (4 KiB random).
Our smaller testbed system is equipped with two Intel Xeon
CPUs, two NVIDIA A100 GPUs, and an NVIDIA Bluefield-
2 DPU. Each GPU has 24GB of HBM2 memory and 126GB
of host DRAM. The DPU has an embedded ARM Cortex-
A72 SoC with 16GB of DRAM. It has an Ethernet network
interface with dual ports of 25 Gb/s. Both the GPU and DPU
are connected over PCIe and serve as offload accelerators to
the host CPU. Refer to Table I for a summary of the system
configurations.

B. I/O Kernels

We implement I/O kernels using scientific datasets found
in the Scientific Data Reduction Benchmark, SDRBench [19].
SDRBench is a standard compression assessment benchmark
suite that contains multiple real-world scientific datasets across
different domains. Metadata, which document how to parse the
data from the binary files, are provided for each dataset. Refer
to Table II for a summary of the datasets used in this paper.
Nyx is a massively parallel, adaptive mesh, cosmology simula-
tion. During its execution, it stores simulation state composed
of particle data for checkpoint-restart of the simulation or post-
analysis visualization. The dataset found in SDRBench has
post-analysis Nyx simulation data composed of 3D arrays in
space of size 512x512x512. Each particle contains 6 fields
of single-precision floating-point data: velocity x, velocity
y, velocity z, temperature, dark matter density, and baryon
density. Our I/O kernel treats each field as a separate data
object. Since all of the fields have a similar data entropy, we
only show results for one of the data object (temperature) in
our paper.
Hurricane ISABEL is a climate simulation application. The
dataset contains 13 single-precision floating-point fields where
each field is a 3D array of 100x500x500. The first dimension
is a simulation timestep. We evaluate three of the fields, each
represented as a data object, in our I/O kernel. Of the three
fields we evaluate, QCLOUD has much lower data entropy
than QRAIN, and QVAPOR.
QMCPACK is an ab initio quantum MonteCarlo package for
analyzing the electronic structure of atoms, molecules, and
solids. In this dataset, there is one field called ’einspline’,
which represents the state stored in memory during the sim-
ulation. In our I/O kernel, we represent this field as a single-
precision floating-point data object with size 115x69x69x288.
The first three dimensions represent the x,y,z coordinates and
the last one is orbital index.
S3D is a combustion simulation application. The dataset
contains 11 fields components each of which is a 3D array
of double-precision floating-point values of size 500x500x500.
We evaluate the pressure component as a separate data object
in our S3D-I/O kernel.
Miranda is a hydrodynamics simulation code used to study
instability growth of turbulent mixing. This dataset has a single
data object, density, from a late time step of a simulation
run on a 3072x3072x3072 uniform grid. The density data
object have been partitioned into 96 regions of dimensions
3072x3072x32. Some of the regions in this data set have zero
entropy (all have the same value).

C. Computation Kernels

Using Runway’s dynamic extensions, we implement inter-
faces to two error-bound lossy compression transforms: ZFP
and SZ. In addition to in-transit compression kernels, we also
utilize a compute kernel which computes π.
ZFP [12] is a lossy compression library for floating-point
data. It contains four critical steps: (1) partition data into
grids of 4d blocks; (2) convert each block to a fixed-point

6

representation; (3) decorrelate values by applying orthogonal
transforms; (4) perform bit manipulation (an embedded coding
from MSB to LSB), then truncation. ZFP implements three
modes to bound compression error: fixed rate, fixed accuracy,
or fixed precision. The fixed rate mode compresses a block to
a fixed number of bits. The fixed precision mode compresses
to a variable number of bits but keeps the number of bit
planes fixed. The fixed accuracy mode compresses a block
with relation to a tolerated maximum error.
SZ [20] is a modular parametrizable lossy compressor frame-
work for scientific data. It contains four critical steps: (1)
predict data values based on a model; (2) apply linear quan-
tization; (3) perform variable-length encoding; (4) perform
lossless compression using existing algorithms. SZ provides
three modes to bound compression errors: absolute error
bound, relative error bound, and peak-to-signal noise ratio
(PSNR). cuSZ [13] is a CUDA implementation of SZ which
performs all of the algorithm steps on a GPU.

We propose dpuSZ as a DPU implementation of SZ that
utilizes the lossless compression acceleration of the NVIDIA
Bluefield-2. Due to its superior compression ratio and speed,
SZ3 uses Zstandard (ZSTD) by default to perform its lossless
compression [21]. However, we revisit using ZLIB as SZ’s
lossless compressor due to ZLIB being based on DEFLATE,
which is accelerated on the Bluefield-2 DPU.
BBP-π is a compute kernel that implements the Bailey-
Borwein-Plouffe (BBP) algorithm to calculate the n-th hex-
adecimal digit of π without calculating the first n − 1 digits
[22]. Although the BBP algorithm can calculate any arbitrary
digit of π, it still scales linearithmically, O(n log n). We use
this kernel to vary the utilization of compute units. This
enables us to explore how our dynamic resource mapping
strategy performs when overlapping a computation kernel
other than compression kernels. We implement two variants of
this algorithm—an OpenMP implementation targeting multi-
core CPU and a CUDA implementation targeting a GPU.

V. EXPERIMENTAL EVALUATION

A. Accelerated Offloading

We first look at the performance of SZ compression on the
BlueField-2 DPU and the NVIDIA A100 GPUs available in
our testbed system.

DPU execution - Figure 5 shows the execution time break-
down of the critical steps of the SZ algorithm on DPU.
As discussed in Section IV-C, SZ is a modular compression
framework, which allows multiple implementations for dif-
ferent steps of the algorithm. In the figure, ZSTD identifies
the default SZ implementation; ZLIB is the version of SZ
that uses a software implementation of ZLIB in the lossless
compression step, and DPDK ZLIB is the version that uses the
DEFLATE accelerator available on DPU for this last step. For
all three versions, we have a single- and a 4-threaded OpenMP
implementation: the former using a single Arm core, and the
latter using all four Arm cores of the DPU (4 cores). As can
be seen, for ZSTD the lossless compression part of the SZ
algorithm has execution time comparable to the other steps.

0 1000 2000 3000 4000 5000
Execution Time (ms)

ZSTD

ZSTD
(4 cores)

ZLIB

ZLIB
(4 cores)

DPDK_ZLIB

DPDK_ZLIB
(4 cores)

S
Z3

 L
os

sl
es

s
M

od
e 46.38 MB/s

120.3 MB/s
21.02 MB/s

50.29 MB/s
63.13 MB/s

184.26 MB/s

Prediction & Quantization Coding Lossless

Fig. 5: Comparison of different modes of SZ (Y-axis) executed
on the DPU with a breakdown of execution time (X-axis) of
each step of the SZ algorithm. The QVAPOR data object from
the Hurricane ISABEL dataset is being compressed in-transit
with Runway. The compression throughput for each mode is
indicated on the right of each bar.

With ZLIB, software-implemented lossless compression is 6×
slower than ZSTD with similar compression ratio. However,
thanks to the hardware acceleration of DEFLATE on the DPU
[23], DPDK ZLIB is 27× faster than ZLIB. This improves
the overall compression throughput of the SZ algorithm by a
factor of 2.34× over the default ZSTD mode on the DPU.
Later, we will refer to this variant of SZ as dpuSZ3.

CPU vs. GPU vs. DPU compression - We now consider
three variants of SZ: (Variant 1) SZ3 targeting host CPU,
(Variant 2) dpuSZ3 targeting the DPU, and (Variant 3) cuSZ
targeting the GPU. With a breakdown of the cost of data
transfers and compression latency for each device, Runway can
decide which variant, thereby which device, to use at runtime.
Figure 6 plots the comparison between directly writing the
data to storage and performing in-transit compression with
each variant. As can be seen, using SZ on the QVAPOR
data object from the Hurricane ISABEL dataset improves the
I/O write latency due to having to write less data. However,
the compression latency of executing on the embedded cores
of the DPU results in an overall slowdown compared to
directly writing with no compression. On the other hand, using
CPU and GPU compression can be beneficial to overall I/O
performance despite the compression overhead.

Based on the data transfer costs between CPU and accel-
erator (GPU or DPU) and the compression latency, a static
resource mapping method would choose the GPU-based cuSZ
variant. However, this mapping decision might not be the best
one if the GPU is being utilized by application code or other
compression tasks. Static resource mapping makes sense when
performing I/O synchronously or when the offload target is not
fully utilized. When performing I/O asynchronously, in-transit
data compression can contend with the computation phase of
the application.

B. Per-region Tuning

Here, we evaluate Runway’s non-uniform compression
scheme where each region is independently tuned instead of
performing uniform compression on the whole data object.
In Figure 7, we show how the entropy for a 3072x3072x32
region of the 3072x3072x3072 Density object in the Miranda

7

0 100 200 300 400 500 600
Execution Time (ms)

No Compression
(Variant 0)

SZ3
(Variant 1)

dpuSZ3
(Variant 2)

cuSZ
(Variant 3)I/O

 O
pe

ra
tio

n
Host to Device Compression Device to Host Write

Fig. 6: Comparison of different variants of SZ (X-axis) ex-
ecuted on the testbed using Runway on the QVAPOR data
object from the Hurricane ISABEL dataset. Variant 0 does
not use compression, while variants 1, 2 and 3 perform com-
pression on CPU, DPU and GPU, respectively. A breakdown
of data transfers to and from the device, compression latency,
and write time is indicated by the type of shaded region on
the stacked bar plot.

dataset is not-uniform. This type of entropy in a data object
showcases the benefit for performing non-uniform compres-
sion. In Figure 8, we plot the compression ratios achieved
when performing uniform compression for the data object
vs non-uniform compression for each region. When the en-
tropy varies dramatically within the region, the non-uniform
compression performs about 15% more compressibility. When
the entropy is similar in the region, there is little difference
in overall achieved compression ratio. The main takeaway
from this experiment is that predictors work better locally,
especially when entropy varies dramatically within a region.
This is evident when we skip the lossless stage for SZ with
the SZ BEST SPEED compression mode; there is a 46.5%
improvement in compressibility.

0 10 20 30 40 50 60 70 80 90
Region with dimensions 3072x3072x32

0
10
20

32
-b

it
E

nt
ro

py

Fig. 7: The 32-bit Entropy for each 3072x3072x32 region of
the 3072x3072x3072 Density object in the Miranda dataset.
The x-axis is the region number in the z-dimension.

0 1 2 3 4 5
Region with dimensions 3072x3072x512

10
1

10
2

10
3

C
om

pr
es

si
on

R
at

io 79
.4

4x
93

.7
9x

22
.1

7x
33

.1
1x

6.
11

x
6.

18
x

5.
54

x
5.

57
x

3.
38

x
3.

37
x

3.
32

x
3.

32
x

3.
41

x
3.

38
x

3.
35

x
3.

34
x

6.
46

x
6.

38
x

5.
79

x
5.

66
x

12
6.

41
x

19
3.

87
x

24
.2

4x
45

.3
1x

Compression Mode
SZ_BEST_COMPRESSION, uniform
SZ_BEST_COMPRESSION, non-uniform

SZ_BEST_SPEED, uniform
SZ_BEST_SPEED, non-uniform

Fig. 8: Comparison of uniform compression and non-
uniform compression with SZ on the Miranda dataset.
SZ BEST COMPRESSION optimizes for compression ratio,
while SZ BEST SPEED skips the lossless stage. The Y-axis
(log-scale) shows the compression ratio achieved (also noted
on top of each bar). The X-axis specifies a 3072x3072x512
region of the Density object in the dataset.

We also evaluate how Runway performs at large scale while
comparing it with an existing solution of using HDF5 filters.
Figure 9 shows how I/O scales exponentially and quickly
becomes a bottleneck at larger scale. In this experiment, we
increase the amount of data proportionally to the number of
MPI ranks (i.e., weak scaling). Performing SZ3 compression
in-transit with HDF5 or Runway on the entire data object im-
proves the overall I/O latency dramatically. We also compare
with performing per-region based non-uniform compression
which allows each region to be compressed independently.
Note, the Y-axis is plotted with a log-scale. Per region
compression exposes additional parallelism and relaxes the
error bound for regions that are highly compressible, thus we
observe slightly better latency with non-uniform compression.
At scale, non-uniform mode improves I/O time by around 20%
over uniform mode.

C. Dynamic Resource Mapping

With the experiments in this section, we make a case
for the need to implement dynamic resource mapping when
performing in-transit compression asynchronously. The set of
experiments in Figure 10 show multiple instances of the same
I/O kernel using the same resource to perform SZ compression.
It is clear that device utilization correlates with compression
latency. In some cases when the device utilization is above
a threshold, such as 0.7, the compression latency is 2-3×
slower to perform on the GPU. We rely on the model proposed
in Section III-D to predict the compression latency based on
empirical data obtained in all of these multiple compression
instances.

Figure 11 shows how the model fits with the data obtained
on the testbed GPU. Since this is a 2D projection of a cubic
polynomial model, the prediction line appears to be disjoint.
We plot the same data with a 3D projection in Figure 12a. In

32 64 128 256 512 1024
MPI Ranks

10
3

10
4

10
5

I/O
 T

im
e

(m
s)

15
.4

%

14
.9

%

14
.5

%

14
.6

%

20
.4

%

19
.0

%

Compression Time Write Time

HDF5 HDF5+
SZ3 Filter

Runway+SZ3
Uniform

Runway+SZ3
Non-uniform

Fig. 9: Comparison of scalability of Runway at large scale on
Perlmutter when performing in-transit SZ3 compression on the
Pressure data object from the S3D dataset. The total I/O time
is shown on the Y-axis (log-scale), and the number of MPI
ranks is shown on the X-axis. The stacked bar plot shows how
much time is spent on SZ3 compression and in performing the
write operation. On top of each bar, we show the percentage
improvement for non-uniform mode over uniform mode.

8

2 4 6 8 10 12 14 16 18 20 22
of QCLOUD-IO

0

1
M

ax
 C

P
U

 U
til

.

2 4 6 8 10 12 14 16 18 20 22
of QMCPACK-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QRAIN-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of nyx-temperature-IO

0

1

M
ax

 C
P

U
 U

til
.

1.00

1.25

C
om

pr
es

si
on

Ti
m

e
(s

)

10.0

12.5

C
om

pr
es

si
on

Ti
m

e
(s

)

1.50

1.75

C
om

pr
es

si
on

Ti
m

e
(s

)

6

7

C
om

pr
es

si
on

Ti
m

e
(s

)

(a) SZ on Testbed

2 4 6 8 10 12 14 16 18 20 22
of QCLOUD-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QMCPACK-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of QRAIN-IO

0

1

M
ax

 C
P

U
 U

til
.

2 4 6 8 10 12 14 16 18 20 22
of nyx-temperature-IO

0

1

M
ax

 C
P

U
 U

til
.

0.5

0.6

0.7

C
om

pr
es

si
on

Ti
m

e
(s

)

4.5

5.0

C
om

pr
es

si
on

Ti
m

e
(s

)

0.6

0.8

C
om

pr
es

si
on

Ti
m

e
(s

)

3.00

3.25

C
om

pr
es

si
on

Ti
m

e
(s

)

(b) SZ on Perlmutter

2 4 6 8 10 12
of QCLOUD-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10 12
of QMCPACK-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10 12
of QRAIN-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8
of nyx-temperature-IO

0

1

M
ax

 G
P

U
 U

til
.

40

50

C
om

pr
es

si
on

Ti
m

e
(m

s)

50

75

C
om

pr
es

si
on

Ti
m

e
(m

s)

10

20

C
om

pr
es

si
on

Ti
m

e
(m

s)

40

50

C
om

pr
es

si
on

Ti
m

e
(m

s)

(c) cuSZ on Testbed

2 4 6 8 10
of QCLOUD-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of QMCPACK-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of QRAIN-IO

0

1

M
ax

 G
P

U
 U

til
.

2 4 6 8 10
of nyx-temperature-IO

0

1

M
ax

 G
P

U
 U

til
.

20

30

C
om

pr
es

si
on

Ti
m

e
(m

s)

20

25

C
om

pr
es

si
on

Ti
m

e
(m

s)

5

10

15

C
om

pr
es

si
on

Ti
m

e
(m

s)

30

40

C
om

pr
es

si
on

Ti
m

e
(m

s)

(d) cuSZ on Perlmutter

Fig. 10: Each plot measures how the processing unit utilization (left Y-axis, indicated as bars) and SZ compression latency
(right Y-axis, indicated as points) scales when increasing the number of I/O kernel instances (X-axis). For each point, we plot
the range of compression latency measured for all instances.

the 3D projection, we do not color code each data point with
the type of data object being compressed as we did in Figure
11. In Figure 12, we plot the prediction estimated with our
empirical cost model as a surface plot, which varies with the
device utilization and data size for each data object. Each data
point represented as a circle on the plot indicates a separate
I/O call with in-transit compression enabled.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max GPU Utilization

0

50

100

150

200

E
xe

cu
tio

n
Ti

m
e

(m
s) QCLOUD QMCPACK QRAIN QVAPOR NYX

Fig. 11: Changes in SZ compression time (Y-axis) based on
the GPU utilization (X-axis). The dashed line is our prediction
based on all past measurements done on the GPU on the
testbed system. This is a 2D projection of GPU utilization
and data size (not shown). Each data object from all the runs
are highlighted are color-coded.

The correlation for device utilization, data object size, and
compression latency is adequate for the GPU device utilization
with a r2 = 0.6 and r2 = 0.5 on the A30 and A100, respec-
tively. For the CPU utilization, the correlation is very strong
with a r2 = 0.96 and r2 = 0.99, on the Intel Xeon and AMD
Epyc, respectively. Since the GPU performs compression very

fast compared to that on CPU, especially for smaller data
sizes (few milliseconds), the observed performance variability
is higher compared to the CPU correlation. This is a limitation
of using nvidia-smi which supports a polling interval of 1 ms or
above to monitor the GPU utilization. In practice, data sizes for
real world applications will be much larger, so the variability
would be less with the same GPU utilization monitor.

Furthermore, the model can be used to predict the compres-
sion latency even when a different compute kernel is running
concurrently, such as BBP-π. In Figure 13, we run together
an in-transit SZ compression of QVAPOR-IO data object and
compute BBP-π algorithm. The prediction model indicates the
compression latency roughly doubles after 0.7 GPU utilization.
Our dynamic resource mapping scheme takes advantage of
this modeling to determine which device to utilize to reduce
contention.

When performing asynchronous I/O, the DPU can be a
better offload target when the host CPU and GPU are busy.
In Figure 14, we demonstrate three different scenarios: (1)
QVAPOR-IO performing an in-transit SZ compression while
co-running a CPU version of BBP-π; (2) QVAPOR-IO per-
forming an in-transit cuSZ compression while co-running a
GPU version of BBP-π; (3) QVAPOR-IO performing an in-
transit dpuSZ compression while co-running both a CPU and
GPU version of BBP-π. When we increase the workload on
the CPU and GPU (compute more digits of BBP-π), we see a
speedup by offloading compression to the DPU. At 64k digits
of π, the overall application time is 9% faster.

9

Max GPU Util.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Data
 Size

 (M
B)

100
200

300
400

500
600

C
om

pr
es

si
on

 T
im

e
(m

s)

20
40
60
80
100
120
140
160

(a) GPU (A30) on testbed. r2 is 0.6.

Max GPU Util.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data

 Size
 (M

B)

100
200

300
400

500
600

C
om

pr
es

si
on

 T
im

e
(m

s)

10

20

30

40

50

(b) GPU (A100) on Perlmutter. r2 is 0.5.

Max CPU Util.

0.5 0.6 0.7 0.8 0.9 1.0 Data Size (MB)
100 200 300 400 500 600

C
om

pr
es

si
on

 T
im

e
(s

)

0

2

4

6

8

10

12

14

(c) CPU (Intel Xeon) on testbed. r2 is 0.96.

Max CPU Util.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Size (MB)
100 200 300 400 500 600

C
om

pr
es

si
on

 T
im

e
(s

)

1

2

3

4

5

(d) CPU (AMD Epyc) on Perlmutter. r2 is 0.99.

Fig. 12: Comparison of correlation among our prediction model, device utilization, and data size of each data object (X-axis
and Y-axis) with the SZ compression latency on the vertical Z-axis. Each I/O with in-transit compression is plotted as a circle
in each plots. The prediction is plotted as a surface plot in the 3D projection.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Max GPU Utilization

0

50

100

150

200

C
om

pr
es

si
on

Ti
m

e
(m

s)

Fig. 13: Multiple workloads (QVAPOR-IO and BBP-π) shar-
ing same resource (A30 GPU). We vary the BBP-π duration
to vary the GPU utilization (X-axis). We show how increasing
the GPU utilization will increase the compression latency (Y-
axis). The predicted time based on our prediction is shown as
a dotted line.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce Runway, a client-server I/O
runtime capable of in-transit data transformation and analysis.
With Runway, we explore the benefits of offloading in-transit
compression to two accelerators: GPU and DPU. We introduce
a cost model to determine the target resource for a data
transformation task dynamically based on runtime parameters.
We evaluate our cost model with extensive experiments on
real-world scientific datasets. Our evaluation and analysis
have highlighted the need to implement a dynamic resource

mapping scheme while performing in-transit data compression
asynchronously. Finally, we explore per-region compression,
which exposes additional parallelism and improves latency.
In future, we plan to evaluate Runway on workflow-based
science applications that use the data object abstraction to save
simulation state for checkpointing or visualization.

VII. ACKNOWLEDGEMENTS

This manuscript has been authored by authors at North
Carolina State University supported under National Science
Foundation’s award CNS-1812727. This research was partially
supported by The Ohio State University under a subcontract
(GR130303), which was supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced
Scientific Computing Research (ASCR) under contract number
DE-AC02-05CH11231 with LBNL. This research also used
resources of the National Energy Research Scientific Comput-
ing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231 and the resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

10

4096 8192 16384
BBP- on CPU

0

2000

4000

6000

To
ta

l T
im

e
(m

s)

4096 8192 16384 32768 65536
BBP- on GPU

0

200

400

600

800

1000

To
ta

l T
im

e
(m

s)

Compression Device
CPU GPU DPU

4096, 12288 4096, 28672 4096, 61440
BBP- on {CPU, GPU}

0

200

400

600

800

1000

To
ta

l T
im

e
(m

s)

Fig. 14: We compare the total time for performing an in-transit SZ compression asynchronously for QVAPOR-IO dataset while
performing an BBP-π computation. The x-axis shows which device computes BBP-π and number of digits. The legend on top
of the figure shows which device performs the in-transit compression.

REFERENCES

[1] M. Folk et al., “An overview of the HDF5 technology suite and its
applications,” in EDBT/ICDT, 2011, pp. 36–47.

[2] Q. Liu et al., “Hello ADIOS: the challenges and lessons of developing
leadership class I/O frameworks,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 7, pp. 1453–1473, 2014, ISSN:
1532-0634.

[3] W. Zhang et al., “Amrex: Block-structured adaptive mesh refinement
for multiphysics applications,” The International Journal of High
Performance Computing Applications, vol. 35, no. 6, pp. 508–526,
2021. DOI: 10.1177/10943420211022811. [Online]. Available: https:
//doi.org/10.1177/10943420211022811.

[4] L. Logan et al., “Pmemcpy: A simple, lightweight, and portable
i/o library for storing data in persistent memory,” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER), 2021,
pp. 664–670. DOI: 10.1109/Cluster48925.2021.00098.

[5] S. Jin et al., “Improving prediction-based lossy compression dra-
matically via ratio-quality modeling,” The 38th IEEE International
Conference on Data Engineering (ICDE 2022), [Online]. Available:
https://par.nsf.gov/biblio/10319819.

[6] J. Ravi et al., “Gpu direct i/o with hdf5,” in 2020 IEEE/ACM Fifth
International Parallel Data Systems Workshop (PDSW), 2020, pp. 28–
33. DOI: 10.1109/PDSW51947.2020.00010.

[7] I. Burstein, “Nvidia data center processing unit (dpu) architecture,”
in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–20. DOI:
10.1109/HCS52781.2021.9567066.

[8] H. Tang et al., “Toward scalable and asynchronous object-centric
data management for hpc,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018,
pp. 113–122. DOI: 10.1109/CCGRID.2018.00026.

[9] H. Tang et al., “Parallel query service for object-centric data manage-
ment systems,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2020, pp. 406–415.
DOI: 10.1109/IPDPSW50202.2020.00076.

[10] H. Tang et al., “Transparent Asynchronous Parallel I/O using Back-
ground Threads,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

[11] L. C. V. Real et al., “User-defined functions for HDF5,” CoRR,
vol. abs/2109.11709, 2021. arXiv: 2109.11709. [Online]. Available:
https://arxiv.org/abs/2109.11709.

[12] J. Diffenderfer et al., “Error analysis of zfp compression for floating-
point data,” SIAM Journal on Scientific Computing, vol. 41, no. 3,
A1867–A1898, 2019. DOI: 10 .1137/18M1168832. [Online]. Avail-
able: https://doi.org/10.1137/18M1168832.

[13] J. Tian et al., “Cusz: An efficient gpu-based error-bounded lossy com-
pression framework for scientific data,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’20, Virtual Event, GA, USA: Association for
Computing Machinery, 2020, pp. 3–15, ISBN: 9781450380751. DOI:
10.1145/3410463.3414624. [Online]. Available: https://doi.org/10.
1145/3410463.3414624.

[14] D. Krasowska et al., “Exploring lossy compressibility through sta-
tistical correlations of scientific datasets,” in 2021 7th International
Workshop on Data Analysis and Reduction for Big Scientific Data

(DRBSD-7), 2021, pp. 47–53. DOI: 10.1109/DRBSD754563.2021.
00011.

[15] R. Underwood et al., “Optzconfig: Efficient parallel optimization of
lossy compression configuration,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 3505–3519, 2022. DOI: 10.
1109/TPDS.2022.3154096.

[16] X. Liang et al., “Toward feature-preserving vector field compression,”
IEEE Transactions on Visualization and Computer Graphics, pp. 1–
16, 2022. DOI: 10.1109/TVCG.2022.3214821.

[17] J. Soumagne et al., “Advancing rpc for data services at exascale,”
IEEE Data Eng. Bull., vol. 43, pp. 23–34, 2020.

[18] NERSC, Perlmutter, NERSC, 2022. [Online]. Available: https://www.
nersc.org/systems/perlmutter.

[19] K. Zhao et al., “Sdrbench: Scientific data reduction benchmark for
lossy compressors,” in 2020 IEEE International Conference on Big
Data (Big Data), Los Alamitos, CA, USA: IEEE Computer Society,
Dec. 2020, pp. 2716–2724. DOI: 10 . 1109 / BigData50022 . 2020 .
9378449. [Online]. Available: https : / /doi . ieeecomputersociety.org /
10.1109/BigData50022.2020.9378449.

[20] X. Liang et al., “Sz3: A modular framework for composing
prediction-based error-bounded lossy compressors,” IEEE Transac-
tions on Big Data, pp. 1–14, 2022. DOI: 10.1109/TBDATA.2022.
3201176.

[21] Zstd, 2015. [Online]. Available: https: / /github.com/facebook/zstd/
releases.

[22] D. H. Bailey, “The bbp algorithm for pi,” Sep. 2006. DOI: 10.2172/
983322. [Online]. Available: https://www.osti.gov/biblio/983322.

[23] Intel DPDK, Data plane development kit project page, 2022. [Online].
Available: https://www.dpdk.org.

11

