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Abstract—Finding relevant datasets can be a time-consuming
and challenging task, especially for self-describing file formats.
Current solutions use either exact or partial keyword matching
approaches to extract and process metadata queries, but they fail
to capture semantic relationships between the metadata content
and query keywords. To address this challenge, we introduce
PSQS, a novel parallel semantic search method for self-describing
files. The method leverages parallel processing and kv2vec
semantic similarity measures to retrieve semantically relevant
data efficiently. Our evaluation against existing metadata search
solutions shows that PSQS offers a new, efficient and effective
semantic search functionality for various fields where large self-
describing files are used, such as scientific data management,
leading to more accurate and efficient data retrieval.

Index Terms—Semantic Query, Metadata Management, Par-
allel Metadata Search

I. INTRODUCTION

Many scientific applications using high-performance com-
puting (HPC) systems nowadays need to deal with mas-
sive amounts of experimental, observational, and simulation
datasets in self-describing data formats, such as HDF5 [1],
ASDF [2],netCDF [3], Zarr [4] and ADIOS-BP [5]. The
primary advantage of self-describing file formats is that they
are designed to allow scientists to store data and metadata
describing the data together using attributes. The metadata in
self-describing files provides detailed descriptive information
about the internal data objects. Metadata can be accessed as a
collection of attributes that are in the form of key-value pairs.
Each attribute key-value pair consists of a key representing the
attribute name and a value representing the metadata value.

While the metadata can be stored in self-describing files,
a capability to search metadata is critical to find the data
scientists require for their analysis. Searching for scientific
datasets in a principled way has been researched for decades.
With the internal metadata, the problem of searching over self-
describing files can be achieved by performing metadata search
over the attributes. Over the years, a series of metadata search
solutions were proposed to address the self-describing dataset
search problem [6]–[10]. In these dataset search solutions,
search functionality was achieved by conducting exact or
partial lexical match between the metadata attributes and
queries.

The capability of searching metadata using lexical matching
methods is a crucial step. However, critically required func-
tionalities in searching for desired scientific data do not stop
there. An important requirement in the scientific discovery

process is finding semantically relevant datasets. For instance,
in climate datasets, “precipitation”, “rain”, and “precip” are
used to refer to the same measurement, but variables in
datasets are named differently, which can be called “semanti-
cally synonymous attributes” issue. With this issue, searching
for lexical matching of these datasets can result in any one of
those, but not all unless a user is aware of both attributes. Our
preliminary study on 50 real-world scientific datasets shows
that more than 14% of attribute names have other synonyms
in different datasets.

Due to the specific structure of the metadata in current
self-describing files, such approaches often need scientists to
navigate through dataset schema and understand the metadata
attributes to be able to query and search interested datasets. It
also results in a barrier of preventing scientists to mine a large
number of datasets as these datasets often have inconsistent
metadata attributes and naming schemas. If users fail to find
the desired self-describing datasets, they may spend much
more inordinate time just manually locating the attributes or
rely on external unnecessary resources or repositories to assist,
even before starting the experiments.

Semantic search to understand a searcher’s intent has been
an extensively studied topic for web documents [11]–[14].
The attention paid to the semantic search in web documents
inspires our main research objective in this investigation:
Can we move beyond lexical matching and improve scientific
dataset search capability by incorporating semantic matching
for self-describing file formats? Admittedly, due to the lack
of semantic cues in the metadata attributes of self-describing
file formats, the semantic solutions in information retrieval
and semantic web are not directly applicable (or too complex
in many cases), even though these semantic search solutions
have been well studied for years. On one hand, the techniques
in information retrieval are mainly about building linked data
based on domain-specific definition of ontology and RDF [11],
[12], [15]. However, most scientific datasets lack the linkage
information and the ontology in self-describing files. On the
other hand, the techniques in NLP (natural language process-
ing) [16], [17] are designed to capture the grammatical and
linguistic characteristics from the contextual sentences, para-
graphs or articles out of datasets. The metadata attributes in
self-describing data formats are in the form of key-value pairs,
not in phrases or sentences. Thus, it is indeed challenging to
build a semantic metadata search solution for self-describing
files. Recently, a novel semantic method called kv2vec [18]



has been proposed to convert key-value pairs into embeddings.
It can be utilized to map attributes to semantic embedding.

In this study, based on our previous work, we introduce
PSQS - a parallel semantic querying service for self-describing
file formats. It aims to capture features from key-value pairs
and represent them by semantic vectors. By introducing a
recurrent neural network with long short-term memory, we are
able to achieve the goal effectively. We have built a prototype
of kv2vec and conducted extensive experimental tests on
metadata attributes of real-world scientific datasets. The results
indicate that, with the new kv2vec method, the chance of
finding semantically relevant key-value pairs is much higher
than the existing methods.

The contributions of this research study are:
• We identify limitations of existing methods in represent-

ing key-value pairs as semantic vectors.
• We introduce a new distributed representation method,
kv2vec, for key-value pairs. Based on similarity mea-
sures of cosine distance between two vectors, we can
measure the similarity of two key-value pairs and perform
metadata queries on scientific datasets.

• We develop a prototype implementation of kv2vec and
test out the implementation to validate our design. The
evaluations show that, as compared to most existing
solutions, kv2vec achieves desired accuracy while being
efficient.

II. BACKGROUND AND MOTIVATION

Semantic search methods have been proven to be efficient
and effective in enlarging the search coverage and providing
relevant datasets at semantic level [12], [13], [19]–[21], which,
we consider, is critically needed in improving search capability
for self-describing files to discover datasets of interest. In self-
describing files, metadata attributes provide detailed descrip-
tions for the data. Therefore, it is natural to consider capturing
the semantics or semantic relationships from the attributes.

Capturing semantics from metadata attributes is crucial to
semantic dataset search over self-describing data files, but
challenges abound, even though the existing semantic search
solutions with either entity-based, document-based or context-
based are abundant and well studied. First, it is not feasible
to apply entity-based semantic search solutions. In the case of
self-describing data formats, the metadata attributes may only
describe partial properties of a data object, and a data object
may not even refer to a real-world entity. Thus, it is hard, if
not impossible, to represent multiple self-describing datasets
as entities for further processing.

Entity-oriented search solutions, including RDF query en-
gines, are designed to to provide semantic search capabilities
by capturing typed relationships and building interconnection
for real-world objects. Typical examples can be seen from
Swoogle [12], Linked Geo Data [22], Nordlys [20] and
Wukong [23]. They are often used to process and publish
data online in the form of entities, properties, literals, and,
most importantly, links to other resources. The main idea is to
identify entities in the textual query or content and to match

them to their counterparts in a third-party resource to build
data linkage. These links facilitate search and exploration of
a global decentralized data space, similar to browsing and
navigation on the web. But they may not be directly applicable
for scientific datasets since it is difficult to distinguish entities
based on attributes and to capture linkage for building RDF
relations. For instance, Linked Geo Data [22] uses the public
comprehensive spatial data collection to achieve spatial data
interconnection. It consists of more than 3 billion entities
which map to real-world cities, blocks, streets and other geo
elements. Wukong [23] is an efficient distributed graph-based
RDF search engine. In general, the entity-oriented search so-
lutions need valid information about the mapping relationship
between the indexed data and the real-world entities.

Document-based semantic search solutions are not directly
applicable to self-describing data files either. In self-describing
data formats, each metadata attribute is named distinctively
and the metadata attribute values are mostly distinctive. It
is meaningless to capture the statistical relationship between
semantics and attribute occurrences, not to mention that each
metadata attribute provides little semantics. In addition, it
is not feasible to apply context-based approaches to self-
describing data files either. The metadata attributes in the self-
describing data formats are in the form of key-value pairs,
not well-formed sentences or paragraphs. The context of each
word in the metadata is disconnected or even missing.

In summary, due to the lack of semantic cues in self-
describing data formats, it is highly challenging, if not im-
possible, to apply existing semantic search solutions to self-
describing data formats directly. There is an imperative need to
design and develop a methodology to achieve semantic search
specifically for self-describing file formats.

III. METHODOLOGY

In this section, we will first introduce a Parallel Semantic
Querying Service (or PSQS) method for self-describing data
formats. We first present an overview of our design, and
then introduce semantic index construction process based on
kv2vec method. After that, we introduce how our method
processes and responds to semantic queries using the semantic
index.

A. Overview of Our Design

As shown in Figure 1, the fundamental idea of our proposed
PSQS method is to use kv2vec to convert key-value pairs
into semantic vectors, instead of using word averaging or
sentence extension algorithms. Considering the word order
(and linguistic structure in general) and relationships between
the keys and values could be important, as many key-value
pairs contain multi-word content such as the description of
a dataset. For all metadata attribute key-value pairs in a
data file, our method yields a cluster of attribute-semantic
vectors (namely, a semantic vector cluster) to represent the
data file semantically. Given a collection of self-describing
data files, we build semantic index by building the semantic
vector clusters and finding their centroids for all data files
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Figure 1: Overview of PSQS workflow. Our method contains
three main components. The first component is the kv2vec
method to capture the semantics between metadata attribute
key-value pairs. The second component is a semantic metadata
indexing module which builds indexes and achieves metadata
attributes semantization in parallel. The third component is a
semantic query processing module to process queries.

in the collection. In other words, the collection of all their
centroids serve as the semantic index in our method for the
given collection of data files.

In query processing module, by utilizing the same pre-
trained dictionary, the query keyword or key-value pair is also
converted into a semantic vector to determine the similarity
(matching score) between the semantic vector and the vectors
of each data object. We describe each component in detail
below.

B. Pre-trained Dictionary for Key-value Pairs Based on
kv2vec method

Before identifying the meaning of each key-value pair, we
need to find out how to create word embeddings. All existing
methods for generating distributed representations for words
rely on a single assumption: a pre-existing dictionary for most
or all words of the key-value pairs is available. Typically, these
word representations are learned from a training dataset such
as the Common Crawl web corpus (840 billion tokens, 2.2
million words) or Wikipedia 2014 (6 billion tokens, 400,000
words). However, this assumption does not always hold true
for key-value pair words in real-world situations, as there may
be domain-specific terms in scientific dataset metadata that are
not in the pre-trained dictionary. Therefore, we must use a
method to extend the dictionary to include these terms. In this
article, we will demonstrate how to use retrofitting techniques
to solve this problem.

In our kv2vec method, we propose the use of Recurrent
Neural Networks (RNNs) with Long Short-Term Memory
(LSTM) hidden units, commonly referred to as LSTM-RNNs.
RNNs are a type of artificial network designed for sequential
or time series data. They use the same task for each element
in a sequence, and the output is dependent on previous
computations. Like traditional feed-forward and Convolutional

Neural Networks (CNNs), RNNs learn from training data.
What sets them apart is their “memory”, as they take into
account prior inputs to influence the current input and output.
Unlike traditional deep neural networks, which assume inde-
pendence between inputs and outputs, the output of RNNs is
dependent on previous elements in the sequence. In this case,
the network will consider previous words when processing
each individual word of a “key” or “value”. This allows us to
capture relationships and unify “key” words into meaningful
phrases rather than unrelated words.

The kv2vec method comprises four distinct layers: an
input layer, a word embedding layer, a composition layer, and
an output layer. The input is each key-value pair, which is split
into its “key” and “value” parts. Subsequently, all the words
are extracted from both the “key” and “value” and matched
with the pre-trained and retrofitted dictionary to create word
vectors. Finally, these word vectors serve as inputs for the
composition layer, which is implemented as a long short-term
memory (LSTM) network, to generate the outputs. The use of
RNN with LSTM in the kv2vec method provides efficiency
in handling the vanishing gradient problem faced by traditional
RNNs. LSTMs are specifically designed to tackle the issue of
long-term dependency, and they have the ability to effectively
remember information over extended periods of time, which is
their default behavior. All recurrent neural networks have the
form of a chain of repeating modules of neural network. In
the standard RNNs, this repeating module will have a simple
structure, such as a single tanh layer. It will combine all the
words and convert them to one dense vector with the same
dimension as the inputs. After the process of the composition
layer, we can achieve the latest hidden state and the output
vector to represent the entire key-value pair.

C. Parallel Semantic Index Construction and Query

Similarity query is the family of queries based on some sim-
ilarity metrics, like top-k queries where the results are ranked
by their similarity to the queried object and similarity join
queries where records from two datasets are joined by their
similarities between each other instead of by specific keys.
While the computations of querying and indexing described
in the previous subsection are independent, the I/O operations
of reading/writing indexes on a file could require coordinations
that are imposed by the underlying I/O library, such as
NetCDF or HDF5. For instance, a file library may require
data to be read or write collectively by all the processors
participating in the file.

During the metadata semantization process, the metadata
attributes are first extracted from the self-describing files. Each
metadata attribute is then mapped to a semantic vector with the
kv2vec generated during the metadata semantization process.
PSQS performs a metadata scanning procedure when building
a metadata index for the first time on a set of data files. To
optimize for parallel environments in HPC systems, PSQS
leverages parallelism from the index construction phase. In
a parallel application with n processes, each process has a
file counter (file counter) that is incremented each time a file



is encountered during the scanning process. The decision on
whether or not a file should be scanned can be determined
using the equation:

process = file counter%n (1)

file counter mod n = r, where r ranges from 0 to n-1. The
equation process = r determines whether process r will scan the
metadata of the encountered file or skip it and continue to the
next one. By using this method, PSQS can take advantage of
parallelism across different data files and prevent I/O conflicts
that can occur when multiple processes access the same data
file simultaneously.

After the recursive scan is completed, our method extracts
the metadata from all data objects and stores the path of the
metadata and the objects. Throughout the metadata semanti-
zation procedure, the metadata attributes are transformed into
an attribute-semantic vector in a d-dimensional vector space
using the n×d kv2vec previously trained in the pick the i-th
row of the kv2vec to be the semantic vector of the attribute.
Note that each semantic vector contains d elements.

Once the metadata is extracted and the metadata semantiza-
tion is completed, the index constructor retrieves the semantic
vectors of the metadata attributes and forms clusters of se-
mantic vectors along with the corresponding data object and
file paths to create the semantic index. In PSQS, the index
contains: two path lists serving as mapping tables between
object path and semantic vectors. We use this data structure
to store both global file path and global object path mapping
tables. In this study, we use the linked list and vectors to
implement this functionality.

Evaluating the similarity accuracy of key-value pairs is a
crucial task, yet it presents a challenge as finding a concrete
and uniform metric is not straightforward. Our aim is to quan-
tify how accurately the vector representations capture human-
perceived similarity, and validate the distributional hypothesis
that the meaning of key-value pairs is dependent on the context
in which they occur. The cosine similarity is a commonly
used evaluation tool and is incorporated in our methodology.
This metric normalizes its scores based on the length of the
vectors, making it scalable and computationally efficient. For
clustering semantic vectors, we choose cosine similarity as
our similarity measure to determine the similarity between
two semantic vectors. As cosine similarity measures the angle
between two vectors and hence can fit in both Euclidean and
discrete versions of Euclidean spaces, we consider that the
cosine similarity is well suited for measuring the difference
between two vectors in multi-dimensional space.

c⃗ =

∑num
i=1 a⃗i
num

(2)

The centroid serves as the key of the semantic index and
the value of the semantic index contains the object paths and
the file paths of the corresponding files.

Indexes can be stored along with datasets as additional
metadata for further processing and querying after they are

created. It also follows the self-contained data management
features of self-describing file formats. The index size is
related to the number of metadata attributes. Based on the
clustering mechanism, the file sizes of indexes are often in
the range of 10MB to 100MB for a self-describing file with
about 10k attributes, which is lightweight along with large-
scale dataset. The individual indexes are beneficial for parallel
applications because they are independent to each other. Note
that querying and processing can be naturally parallelized
based on index files.

IV. EVALUATION

In this section, we evaluate the effectiveness of semantic
query functionality of PSQS on self-describing data files. We
contrast our approach with existing metadata search solution,
including MIQS and MongoDB based solution.

A. Experiment Setup

The evaluation was performed on the Quanah cluster at
Texas Tech University’s High Performance Computing Center
(HPCC). The Quanah cluster comprises 467 worker nodes,
each with 36 cores, for a total of 16,812 cores, and is equipped
with an Intel Omni-Path 100 Gbps fabric for MPI computing.
Each node has dual-18-core Broadwell Xeon processors, 36
cores per node, and 192 GB of memory. The Quanah cluster
has a peak performance of 485 Teraflops/s, as indicated by
HPL benchmark results. It operates on a CentOS 7 Linux
software environment managed by OpenHPC and uses the
Lustre file system for home, work, and scratch spaces.

B. Datasets

The HDF5 file format is a typical example of a self-
describing file format. For the evaluation, we gathered three
sets of real-world HDF5 files: 1,987 from the National Snow
and Ice Data Center (NSIDC) [24], 1,285 from the Sea
Ice Altimetry Data Center (SIADC) [25], and 100 large-
scale files from the Baryon Oscillation Spectroscopic Survey
(BOSS) [26]. The file sizes in NSIDC and SIADC range from
0.8 MB to 2.5 MB, with the number of metadata attribute key-
value pairs per file ranging from 2,000 to 5,000. For the BOSS
datasets, the file sizes range from 500 MB to 1.35 GB, with the
number of metadata attribute key-value pairs per file ranging
from 2,000,000 to 3,700,000. We believe this collection of
datasets is sufficient and diverse enough for our evaluation.

We conducted three series of experiments using three sets of
scientific datasets. The first series of experiment is to evaluate
metadata semantization on pre-trained dictionary. The second
experiment focused on evaluating the overhead, including
storage usage and pre-processing time. The third experiment
aimed to assess semantic functionality, including query hit
rate (as a percentage), recall and query performance with a
MongoDB-based metadata search solution.

C. Evaluation of Search Functionality

Evaluating search functionality is the most important be-
cause it helps to assess the effectiveness and efficiency of
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Figure 2: Query hits comparison of these four methods for three collections of real-world scientific datasets.
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Figure 3: Recall comparison of these four methods for three collections of real-world scientific datasets.

a search system in finding relevant information. The two
main metrics used for this evaluation are query hit rate and
recall. Query hit rate measures the percentage of queries that
return relevant results, while recall measures the proportion of
relevant results that are retrieved by a query. These metrics
help to determine the precision and recall of our search
service, respectively, and provide insights into how well the
service system is able to retrieve relevant information from
large datasets. Overall, evaluating search functionality helps
to ensure that a search system is able to deliver accurate and
efficient results to researchers.

1) Query hits comparison: PSQS allows users to search
for datasets of interest by querying metadata attributes. To
test its effectiveness, we collected 10,000 key-value pairs as
query inputs and compared it with other methods (MIQS,
MongoDB-based search, and GloVe). To better compare them,
we extracted all words from the content and randomly selected
1,000 words as keywords to perform queries with the other
three methods for the query hits comparison. The cosine
similarity between each metadata attribute and the query input
was calculated, and the most similar result was returned. The
results showed that PSQS matches 80% of the keywords,
while the other methods only return less than 45%. The
output of PSQS also includes results from the other methods,
demonstrating its potential for real-world use cases.

The results of tests with two additional sets of datasets
(related papers and Kaggle) were consistent with our findings.
We also used publications that cited these datasets to evaluate
the performance of PSQS. Random keywords were selected
from these publications, and their semantic relevance was
considered. Kaggle, a world-leading data science community,
was searched using the name of these datasets. The results
showed that PSQS outperformed the other methods (MIQS,
MongoDB-based, and GloVe) by matching more than 15% of
the NSIDC datasets, while the others only matched less than
10%. These results suggest that PSQS has better coverage and
is more likely to return the desired datasets.

2) Recall comparison: The recall of the four methods
(PSQS, MIQS, MongoDB-based, and GloVe) was computed
based on the results of the previous experiment, as shown
in Figure 3. The recall was computed using the same set
of query keywords on all three datasets. The results indicate
that PSQS outperforms the other methods, with a recall of
over 80% for NSIDC datasets, while the others have a recall
of roughly 60%. This trend was consistent for the other
two datasets, demonstrating that PSQS has a superior ability
to capture semantic relationships between queries and meta-
data attributes. Our method was further tested with various
keywords from different sources on the three datasets and
consistently outperformed the other solutions in terms of query



hits and recall. This confirms its efficiency in semantic search.
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MongoDB-based method

3) Query Performance: Query performance is obviously
critical for metadata searches. Our method, which utilizes
semantic indexes, provides an efficient metadata search with a
consideration for semantics. Figure 4 shows the results of our
comparison of query performance between our method and
the MongoDB-based solution. Our PSQS method achieved a
query throughput of 365k per second with 20 processes, while
the MongoDB-based solution only managed 273k. The query
throughput of our method increased linearly with the number
of processes, reaching 1102k, without any reliance on external
databases. In comparison, the MongoDB-based solution only
increased its query throughput from 273k to 875k when 20
processes became 100 processes, resulting in a 25.94% lower
average throughput. The PSQS method consistently delivered
higher query throughput compared to the MongoDB-based
metadata search solution.

D. Summary of Evaluation

Our evaluation highlighted the key advantages of our
method, including its semantic querying capability, effec-
tive semantic index mechanism, and efficient query perfor-
mance. The results confirmed that our method increases search
coverage, locates semantically relevant results for metadata
searches, and boasts impressive query performance.

V. CONCLUSION

In this paper, we present a novel parallel semantic query-
ing service (PSQS) for self-describing file formats. It inte-
grates key-value pair vectors into metadata search solutions
and enables semantization of metadata through the kv2vec
method, resulting in semantic indexes rather than relying on
traditional lexical match-based solutions. Our extensive eval-
uations demonstrate that PSQS outperforms existing database
management system-based metadata search solutions in the
semantic search of self-describing files. To our knowledge, this
is the first study to offer parallel semantic search for scientific
datasets and has the potential to enhance data management
functionality and improve the efficiency of searching and
discovering scientific datasets through semantic meaning in
the HPC community.
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