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Abstract—Parallel I/O is an effective method to optimize data
movement between memory and storage for many scientific appli-
cations. Poor performance of traditional disk-based file systems
has led to the design of I/O libraries which take advantage of
faster memory layers, such as on-node memory, present in high-
performance computing (HPC) systems. By allowing caching and
prefetching of data for applications alternating computation and
I/O phases, a faster memory layer also provides opportunities
for hiding the latency of I/O phases by overlapping them with
computation phases, a technique called asynchronous I/O. Since
asynchronous parallel I/O in HPC systems is still in the initial
stages of development, there hasn’t been a systematic study of
the factors affecting its performance.

In this paper, we perform a systematic study of various factors
affecting the performance and efficacy of asynchronous I/O,
we develop a performance model to estimate the aggregate I/O
bandwidth achievable by iterative applications using synchronous
and asynchronous I/O based on past observations, and we
evaluate the performance of the recently developed asynchronous
I/O feature of a parallel I/O library (HDF5) using benchmarks
and real-world science applications. Our study covers parallel
file systems on two large-scale HPC systems: Summit and Cori,
the former with a GPFS storage and the latter with a Lustre
parallel file system.

Index Terms—Performance Evaluation, Modeling, Asyn-
chronous I/O, Parallel I/O

I. INTRODUCTION

Many HPC simulations, machine learning, and deep learn-
ing applications alternate computation and I/O phases. In order
to take advantage of increasingly powerful HPC systems,
scientists can scale their simulations in three ways: (1) by
targeting more complex problems with high computational
demands, (2) by increasing the number of time steps or
duration of a computation and I/O phase, and (3) by running
the simulation at finer resolution (space or time), which will
increase the number of time steps. Several research efforts
have focused on the scaling capabilities of computation phases
[1], [2]. Scaling the computation performed by an application
often leads to scaling its working memory size, thus making
the data movements and the resulting I/O overhead more
apparent. If the latency of I/O phases in an application is too
high, it can become a bottleneck and lead to poor utilization
of compute resources.

Recent and upcoming HPC architectures are adding fast
solid state storage layers to reduce the I/O latency, but data
still have to be moved between long-term storage and memory.

For instance, the Summit system at Oak Ridge Leadership
Computing Facility (OLCF) contains compute nodes with an
SSD for faster access and a shared parallel file system (GPFS).
Upcoming exascale computing architectures are expected to
contain a fast node-local storage layer, a high performance
storage layer, and a high capacity storage layer. With GPUs
available on these systems and the need to move data across
heterogeneous memory locations, optimizing data movement
and parallel I/O becomes even more complicated. Optimizing
data transfers within applications can improve performance at
the cost of programmability and portability. To improve time-
to-solution, I/O libraries, such as HDF5 [3] and ADIOS [4],
allow researchers and developers to implement optimizations
transparently to the application. Furthermore, asynchronous
I/O implementations have been gaining prominence among
these I/O libraries, such as HDF5 Async I/O VOL [5] and
data management systems, such as PDC [6]. Asynchronous
I/O support in these parallel I/O libraries allows overlapping of
the I/O phases with the computation phases of the application.

However, there hasn’t been a systematic study of bene-
fits and limitations of asynchronous I/O. When computation
phases are short, i.e., an I/O phase takes more time than
the computation phase, asynchronous I/O might not lead to
performance benefits. Moreover, asynchronous I/O requires
some buffer space in order to avoid synchronization issues.
When the data transfers required to initialize those buffers and
set up asynchronous I/O take longer than the following compu-
tation phase, the overhead of asynchronous I/O might lead to
performance degradation over performing I/O synchronously.

In order to gain a better understanding of asynchronous I/O,
we identify and study several factors affecting its performance.
These include: the amount of data to be transferred via I/O,
the number of MPI ranks and nodes involved in I/O, and
various costs (computation time, I/O time, data transfer setup
costs, etc.). We use this study to develop a cost model for
estimating the performance benefits of asynchronous I/O over
synchronous I/O. We validate this cost model using a set of I/O
kernels that are representative of plasma physics simulations
and a big data clustering application. We then show the
benefits of asynchronous I/O on four real science applications
with different input parameters.
To the best of our knowledge, an evaluation and model of
asynchronous I/O at scale is missing. In summary, this paper
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makes the following contributions:
1) An experimental evaluation of the aggregate I/O rate

achievable by HDF5 without and with asynchronous I/O
on two large scale systems: Summit and Cori. We run
our experiments up to 2k nodes on Summit and identify
when synchronous I/O becomes a bottleneck.

2) An analytical model for estimating performance of syn-
chronous and asynchronous I/O based on computation
time, data movement time, and setup costs.

3) A model-based approach to evaluate efficacy of both I/O
modes using two I/O kernels and four large-scale science
applications.

II. BACKGROUND AND MOTIVATION

A. Hierarchical Data Format version 5 (HDF5)

HDF5 is a popular I/O library and self-describing file format
that provides an abstraction layer to manage data and the
metadata within a single file [3]. HDF5 is used heavily in
various science domains to manage a wide variety of data
models and is used for efficient parallel I/O in HPC simula-
tions and machine learning analyses [7]. HDF5 has recently
provided a feature, called the Virtual Object Layer (VOL) [8],
to enable HDF5 to support dynamic control to the library at
runtime. VOL allows intercepting the high-level HDF5 public
application programming interface (API) and implementing
various optimizations for different types of storage medium,
thus enabling better data management transparently to the
application. The user still gets the same data model where
access is done to a single HDF5 “container”, however the
VOL connector translates from what the user sees to how the
data is actually stored.

A team of researchers have used the HDF5 VOL feature
to implement an asynchronous I/O VOL connector [5] that
enables asynchronous I/O for HDF5 operations using back-
ground threads. This implementation can be compiled as a
dynamically linked library (DLL) and linked to a user’s appli-
cation directly, remaining separate from the installed version
of HDF5 and making it easy to adopt. The background threads
are managed by Argobots, a lightweight low-level threading
framework [9]). More implementation details of the VOL
connector are available in [5]. Since HDF5 is heavily used by
science applications, in this study we use it to evaluate four
large-scale applications utilizing this HDF5 VOL connector
that is available publicly1. The VOL feature also allows us
to incorporate our modeling strategy, proposed in Section III,
which relies on runtime tracking of I/O calls to determine if
asynchronous I/O is beneficial over synchronous I/O.

B. Asynchronous I/O Challenges

Asynchronous I/O has the potential for improving applica-
tion performance by overlapping computation and I/O trans-
fers, and can be particularly beneficial for iterative applications
alternating computation and I/O phases. The benefits of asyn-
chronous I/O depend on application and system characteristics

1HDF5 Asynchronous I/O VOL: https://github.com/hpc-io/vol-async

(number and duration of computation and I/O phases, data
transfer setup costs, etc.). Existing data management libraries
and recent programming languages provide the necessary tools
to implement asynchronous I/O on these systems; however,
profiling and identifying the effectiveness of such methods has
become difficult due to application and system complexity. All
these challenges motivate the need to provide a transparent and
adaptive asynchronous I/O interface to automatically enable
asynchronous I/O when needed without placing the burden on
application developers. A first step towards this overarching
goal is obtaining a thorough understanding of asynchronous
data movement. In this paper, we aim to answer some of
these challenges by introducing a performance model to decide
whether an I/O phase would benefit from asynchronous I/O.

C. Related Work

I/O latency has been a performance bottleneck for several
applications due to slow disk performance. Parallel file sys-
tems, such as Lustre, PVFS, GPFS, and NFS, aim to pro-
vide efficient concurrent access to disk-based parallel storage.
These file systems still require users to perform significant
tuning to obtain superior performance. With faster storage
layers between main memory and disk-based file systems,
there are several asynchronous I/O efforts to hide the I/O
latency by caching or prefetching data during other phases
of application, typically computation. These efforts can be
classified into various layers, including operating systems or
file systems, I/O middleware, high-level I/O libraries, and other
data management layers. We briefly describe these efforts here
and motivate this paper’s contributions to the existing work.

Among the most prominent efforts of asynchronous I/O,
POSIX [10] introduced asynchronous I/O (AIO) for a pro-
cess to perform I/O operations alongside computation op-
erations [11]. These “aio_*” functions are available for
reading and writing data asynchronously to the underlying
file system. Operating systems, such as Linux provide POSIX
AIO support [12]. Elmeleegy et al. [13] proposed Lazy AIO
(LAIO) routines for converting any I/O system call into
an asynchronous call. All these low-level I/O calls require
user involvement in managing dependencies. There have been
some asynchronous I/O efforts at the file system level. For
instance the Light-weight file system (LWFS) [14] proposes
asynchronous I/O support at the file system level. However,
to use the asynchronous I/O entire file system has to be
replaced with LWFS, which is impractical on production-class
supercomputing centers that typically use Lustre, GPFS, etc.
that support thousands of users.

In parallel I/O libraries, several I/O overlapping strategies
have been explored. Among them Patrick et al. [15] and
Zhou et al. [16] explore overlapping I/O with computations
in the MPI-IO interface [17] at the MPI-IO level and at
the application level, respectively. These studies were either
performed at small scale or specific to applications. High-
level libraries, such as ADIOS [4] and HDF5 [5] provide
asynchronous I/O. In ADIOS, asynchronous I/O is provided
using a staging interface, where data is transferred to staging
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servers that are supported by Data Spaces [18], [19]. HDF5’s
asynchronous I/O [5] uses background threads for caching
data either to a memory buffer on the same node where a
process is running or to a node-local SSD. In both these I/O
libraries, the staged or cached data is later written to long term
storage asynchronously. Similarly, Multilayered Buffer System
(MLBS) [20], [21] is a recently proposed specialized I/O li-
brary for demonstrating the capability of overlapping I/O with
computation phases using background threads. DataElevator
[22] uses similar strategy of writing to a burst buffer and move
the data to a capacity storage asynchronously. Proactive Data
Containers (PDC) [6] is a user-level data management system
with servers for object abstractions and performs asynchronous
I/O similar to ADIOS and HDF5. Recent work has focused
on improving data staging techniques, such as efficiently
supporting unstructured mesh transfer [23] and reducing the
initialization cost for short-running jobs where it cannot be
amortized over the total runtime [24].

None of these studies looked into asynchronous I/O strate-
gies in a generic fashion or provided analytical modeling based
on factors such as computation time, data size, I/O time,
and overhead of setting asynchronous mechanism. Previous
efforts that have focused on modeling I/O performance on
HPC systems [25]–[30] target prediction of I/O time using
characteristics of application I/O patterns (e.g., contiguous
and strided accesses) and performance tuning parameters (e.g.,
number of MPI-IO aggregators, file system striping). None
of them, however, include asynchronous I/O in their models
and analysis. Although the libraries described above enable
data movement overlapping, they do not motivate the need to
switch between synchronous I/O and asynchronous I/O modes
automatically. Our work motivates the need to have a runtime
analysis of asynchronous I/O and provides a model that can
be easily integrated in existing libraries to determine which
I/O mode is beneficial. Our empirical model uses a history of
previous runs and a statistical approach, similar to that of Be-
hzad et al. [28]. While Behzad et al. targets only synchronous
I/O and focuses on tuning file system parameters, such as
Lustre stripe count and stripe size, we focus on estimating
the aggregate I/O bandwidth achievable by applications with
both synchronous and asynchronous I/O. Our analysis also
covers file systems where system parameters (such as stripe
size and stripe count) are automatically configured, such as
GPFS on Summit and rely on best practices for file system
parameters based on previous work. Our goal for empirically
estimating the aggregate I/O bandwidth is to decide whether
asynchronous I/O will be beneficial over the ideal observed
synchronous I/O.

III. METHODOLOGY

Asynchronous I/O operations at a high-level can be bro-
ken into read and write I/O. Read operations can be made
asynchronous by incorporating prefetching strategies in an
application, while the latency of write operations can be
hidden by employing effective caching strategies. However,
these asynchronous I/O methods may have negative impact

on performance for some applications and datasets. For iter-
ative applications, asynchronous I/O might even benefit some
iterations of the application and not others.

In order to understand potential benefits for applications, it
is necessary to quantify the effectiveness of asynchronous I/O.
In this section we propose a performance model to estimate
the performance benefits and overheads of asynchronous I/O
methods. With our methodology, we try to target a subset
of applications that we believe are important in the next
generation of HPC. We note that previous work, such as [31],
have recognized common I/O trends in HPC workloads. Our
model applies to iterative applications, with each iteration
alternating computation and I/O phases. Many HPC workloads
follow this pattern, including the applications evaluated in this
paper. We consider various costs included in asynchronous
I/O operations, i.e., initialization cost, data transfer time,
computation time, and number of iterations. To reiterate, the
proposed performance model has two objectives: estimating
the effectiveness of asynchronous I/O on future iterations
based on performance observed in previous iterations of the
application, and estimating scalability. In particular, we are
interested both in strong scaling and weak scaling behaviors
of asynchronous I/O (i.e., scalability with the number of nodes
and the data size).

A. Iterative-based IO Performance Model

To model asynchronous I/O, we start by breaking down the
total execution time of an iterative application into the sum
of the execution time of all epochs plus the initialization and
termination times (Eq. 1). During initialization, asynchronous
I/O methods allocate memory buffers for caching, set up com-
munication channels, initialize background threads for per-
forming I/O, and open file descriptors. The time to complete
each iteration is characterized by tepoch. The total number
of iterations can vary based on the application and be input-
dependent due to convergence requirements. The termination
of asynchronous I/O method involves freeing any memory
buffers and finalizing background threads, etc. The initial-
ization and termination costs (tinit and tterm, respectively)
are typically small and, based on our experiments, relatively
constant as we scale the number of available nodes. The
proposed performance model has two objectives: estimating
the effectiveness of asynchronous I/O on future iterations
based on performance observed in previous iterations of the
application, and estimating scalability. We will now focus on
estimating each epoch time.

tapp = tinit +

iters.∑
i=0

tepoch + tterm (1)

We assume that each epoch is composed of a computation
phase (tcomp) and an I/O phase (tio). This is typical for large-
scale scientific simulations that converge on a solution by
iterating in discrete time steps configured by the user. The
computation time in our model includes any communication
time and the synchronization time among parallel processes.
An I/O phase in our model includes all data transfers that
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are involved with I/O operations (such as copying from GPU
memory to CPU memory before persisting to storage). In Eq.
2a, we show a synchronous epoch time (tsync epoch), which
is composed of separate I/O and computation phases, where
computation is stalled during the I/O phase. In Eq. 2b, we show
an asynchronous epoch time (tasync epoch), where the I/O
phase either partially or fully overlaps with the computation
phase. With the max operator in Eq. 2b, we either account
for only the computation phase time if it can fully overlap
with the I/O phase or the remaining I/O phase time if it
is partially overlapped. Furthermore, an asynchronous epoch
also introduces an additional data transfer, which we denote
as ttransact overhead. This additional data transfer is a non-
zero-copy, usually between fast volatile memory and slower
non-volatile storage, which is often used in asynchronous I/O
implementations to eliminate data races between the main
application thread and background I/O threads.

tsync epoch = tio + tcomp (2a)
tasync epoch = max(tcomp, tio − tcomp) + ttransact overhead (2b)

In Fig. 1 we show various scenarios comparing a syn-
chronous epoch and an asynchronous epoch. Each scenario has
computation phases, I/O phases and transactional overheads to
set up the asynchronous data transfers. With asynchronous I/O,
the I/O cost changes from fully blocking (i.e., synchronous)
to partially blocking because of the transactional overhead.
If the computation phase is longer than the I/O phase, the
I/O latency can be completely overlapped, as seen in Fig.
1a. If the computation phase is shorter than the I/O phase,
it may still achieve some overlap, as seen in Fig. 1b. In
both these scenarios, an asynchronous epoch also includes
the transactional overhead, which we denote as “Overhead”
in the figures. This overhead captures the data transfer to
an extra memory buffer to avoid data races or modification
by subsequent computation phase for an asynchronous I/O
method. Even though the transactional overhead may be small,
it makes the transparent asynchronous I/O method not always
beneficial. This is shown in Eq. 2b, where the computation is
assumed to overlap with the data transfer from the previous
iteration. When the tcomp ≤ ttransact overhead, utilizing asyn-
chronous I/O will result in a slowdown because no amount
of overlap will amortize the cost of introduced transactional
overhead, as shown in Fig. 1c.

B. Empirical Modeling of Epoch Time

To estimate the different costs mentioned in Eq. 2, we use
an empirical modeling approach based on real measurements
from two supercomputers: Summit at the Oak Ridge Lead-
ership Computing Facility (OLCF) and Cori at the National
Energy Research Scientific Computing Center (NERSC). Re-
fer to Section IV-A for more information about these HPC
systems. We use this empirical approach because the I/O
costs vary from system to system depending on the hardware
configuration and file system characteristics. Recall that our
model requires estimating three costs: compute time (tcomp),
transactional overhead (ttransact overhead), and I/O time (tio).

In Fig. 2, we summarize the process of estimating using
a history of time measurements and a statistical method for
each cost, and progressively adding new measurements to the
history for improving the accuracy of the model. Measure-
ments collected while running applications are also added to
the history. We measure the computation time directly in the
application and use a weighted average over the measurements
taken in previous iterations to estimate the computation time
of the next iteration. This simple approach of estimating the
computation phase can be replaced with advanced models [1],
[2]. In this paper, we focus our estimation to transactional
overhead and I/O times.

The transactional overhead and I/O rate are dependent on the
hardware used in the compute nodes, communication intercon-
nects, network between compute and storage subsystems, and
the parallel file system. Moreover, the number of jobs running
on the systems using the shared storage system simultaneously
can also affect the observed I/O rate. We define the I/O rate as
the ratio of data size and the I/O time. In this subsection, we
briefly describe the method we use to estimate the transactional
overhead and the I/O rate.

1) Estimating transactional overhead: The transactional
overhead poses a challenge in using asynchronous I/O, es-
pecially when data or computation scaling is involved. In the
strong scaling case, data size is fixed while compute resources
are increased. This implies that the overall read and write time
for an application will decrease until there is some bottleneck,
such as interconnect latency; moreover, the compute time will
also decrease. If the on-node DRAM is used for caching, then
the cache time is expected to be relatively constant during the
execution of the application. This implies that for strong scal-
ing applications at some point the performance of transparent
asynchronous I/O will be worse. For weak scaling applications,
data size scales with the available resources, which implies that
the duration of computation and I/O phases will stay relatively
constant given adequate resources. However, the synchronous
I/O phase commonly becomes a bottleneck due to interconnect
bandwidth. For both weak and strong scaling applications,
to determine if asynchronous I/O is beneficial we need to
track how much transactional overhead is added and if enough
overlapping potential exists to hide the added overhead. We
estimate the transactional overhead by measuring data copy
costs between different memory buffers, which, depending on
the application, can be located either on CPU or on GPU.

For CPU applications that enable transparent asynchronous
I/O, the transactional overhead is the cost of a memcpy be-
tween two CPU memory buffers. We measured the bandwidth
of a memcpy transfer with varying sizes of data on a single
node on both systems using a micro-benchmark. We found the
memcpy bandwidth to be constant after 32MB, so we expect
a constant bandwidth when we calculate the transactional over-
head due to CPU memory-to-memory copy for I/O requests
greater than 32 MB. The transactional overhead for smaller
I/O requests will depend on the data size. In the considered
applications the data sizes are large enough to amortize the
data transfer.
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(a) Ideal scenario of asynchronous I/O, where
computation phase is longer than the I/O phase
yielding complete overlap of I/O latency.
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(b) Partial overlap scenario, where computation
phases are shorter in time than the I/O phases that
may result in a partial overlap of I/O latency.
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Fig. 1: Each timeline shows a scenario for overlapping a computation phase with I/O phase, synchronous on top and
asynchronous on bottom.

previously
measured times

execute iterations
cost

estimate
performance 

model

Fig. 2: A model feedback loop added to a high-level I/O library
to estimate costs associated with asynchronous I/O.

For GPU-accelerated applications, the I/O transactional
overhead includes the blocking memory transfer time between
the CPU memory and GPU memory. On some systems the
GPUs are connected to the CPUs using PCI-E 3.0 connections
which have a theoretical upper limit of 15.75GB/s bandwidth.
The interconnect on Summit, NVLink 2.0, has a theoretical
upper limit of 50GB/s. However, there is some overhead
associated with copying data between the GPU and CPU such
as setting up a direct memory access (DMA) controller. Since
the DMA controller requires the memory pages to not be
swapped out during transfer, the runtime will incur additional
overhead for creating a transaction copy when not pinning the
host memory pages. In our micro-benchmarks, the memory
copy cost is amortized for data sizes greater than 10MB, and
we found that with pinned host memory the peak bandwidth
is close to the theoretical maximum.

2) Estimating the I/O time: In the I/O path, the data might
have to be copied between multiple storage systems before
being ready or resident on the target storage location. In the
synchronous I/O case, each of these data movements will result
in a blocking I/O call. The full cost of I/O will thus be the
sum of all the data transfers. With parallel I/O, since all the
nodes have to synchronize after their respective data transfers,
the MPI process taking the longest time determines the I/O
time for that iteration. Each data transfer time is based on
the size of the data being transferred divided by the I/O rate
of that data transfer (Eq. 3). In the case of strong and weak
scaling scenarios, the size of the data plays a critical role in
estimating the I/O cost. We assume that any start up costs
involved in setting up the data transfer are constant and our
model captures that as an tinit in Eq. 1.

tio =
data size

fio rate
(3)

As noted in Section II-C, previous studies exist in estimating
I/O performance on HPC systems. While these studies focused
on predicting I/O performance based on application I/O pat-

terns and various tuning parameters, our goal is to estimate
the overall cost for executing an I/O request (read or write)
from a high-level library (i.e., HDF5 in our case) without
considering the entire application’s or overall system’s I/O.
We use a statistical model which relies on the number of MPI
ranks and data size of a read or a write request, i.e., HDF5
API calls H5Dread and H5Dwrite.

The data movement time is dependent on how much band-
width a storage system and interconnect is able to support.
We estimate the I/O rate based on a history of I/O requests
by an application. For each I/O request, we record the data
size, number of MPI ranks, and aggregate I/O rate. Based
on the measurements, we apply statistical methods similar
to [28]) to fit the I/O performance with varying number of
MPI ranks and data size to extract a model that estimates
the I/O cost; however, instead of using nonlinear regression
methods, we apply linear regression and linear-log regression
to estimate model parameters analytically. We found linear
regression to be sufficient given the accuracy of our model. We
determined non-linear methods were not necessary. With this
approach, we are able to model both weak scaling and strong
scaling performance. Recall, with weak scaling we increase
the problem size while scaling available resources, while with
strong scaling we keep the problem size constant while scaling
available resources.

Using Eq. 4, we fit a linear regression to estimate how the
I/O rate scales as we increase the number of nodes and the
dataset size. For synchronous I/O, Y denotes a Nx1 matrix that
contains measured aggregate I/O rate to the parallel file system
for N past data transfers. For asynchronous I/O, Y denotes a
Nx1 matrix that contains the measured aggregate I/O rate of a
non-zero-copy to a temporary storage location which is used to
calculate the transactional overhead for N past data transfers.
For both modes, X denotes a Nx2 matrix that contains the data
size and number of participating processes (or MPI ranks) for
the previous N data requests. The i in Eq. 4 denotes the i-th
row in the Y and X matrices. Each row contains information
from a past data transfer.

fest io rate =⇒ yi = β0xi,0 + β1xi,1

β = (XTX)−1XTY
(4)

We utilize the coefficient of determination, denoted as r2,
to assess how strong of a linear relationship exists between
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the measured aggregate I/O rate (Y) and the scaling factors
used in our model (X). The r2 values range from 0 to 1 and
are commonly expressed as percentages. An r2 value above
70% indicates a strong linear correlation [32]. We calculate
r2 using Eq. 5. Using the coefficient of determination allows
us to quantify how well our linear method is able to model
the observed aggregate I/O rate (Y) based on the data size
and the number of participating processes for all measured
I/O requests (X). In our experiments (Section V), we have
observed a strong linear correlation (r2 values above 80% for
synchronous I/O and 90% for asynchronous I/O) between the
observed aggregate I/O rate and the considered scaling factors.

r2 =
Cov(X,Y )2

V ar(X)V ar(Y )
(5)

IV. EXPERIMENTAL SETUP

A. System Configuration

To evaluate the asynchronous I/O cost model introduced in
§III-A, we performed our experiments on two systems:
Summit is a pre-exascale supercomputing system with 200
petaflops (PF) performance located at OLCF [33]. It is com-
posed of 4,608 nodes, where each node contains two IBM
3.07 GHz POWER9 CPUs, each with 22 cores, and 6 Nvidia
V100 GPUs. The entire compute system is connected to an
IBM’s SpectrumScale GPFS storage that has a 2.5 TB/s peak
bandwidth. Each of Summit’s compute nodes has a 1.6 TB
NVMe SSD, which enables faster read and write access to
data stored in the shared parallel file system.
Cori is a ≈30 PF Cray XC40 system located at NERSC
[34]. We use the “Haswell” partition of the system that is
comprised of 2,388 Intel Xeon “Haswell” processors. The
compute subsystem is connected to a Lustre parallel file
system that offers a peak bandwidth of 700 GB/s and an SSD-
based burst buffer with a peak bandwidth of 1.7 TB/s. Based
on NERSC best practices, we use 72 OSTs (stripe large) as
stripe count for all our experiments.

B. I/O Kernels

We use two I/O kernels, VPIC-IO and BD-CATS-IO,
to represent large-scale simulations which commonly use a
checkpoint-based approach segmented by multiple epochs,
each including a computation and a I/O phase. We increase
the data size for the I/O kernels as we scale up the compute
nodes. Domain scientists typically configure the frequency of
I/O phases, such as number of checkpoints, to increase overall
throughput.
VPIC-IO [35] was extracted from a plasma physics code,
Vector Particle in Cell (VPIC), that studies interactions of a
magnetic re-connection phenomenon [36]. The kernel emu-
lates writing particle data, where each particle has 8 properties
and each MPI process writes (8x1024x1024) particles (≈32
MB). The number of particles increases with the number of
MPI processes (weak scaling). Each property of the particles
is written to a 1-D HDF5 dataset. In [36], the frequency of I/O
phase is after ≈2000 time steps, i.e., 2 hours computation time

between I/O phases. In our evaluations, we set the periodicity
of I/O phases in VPIC-IO using a 30 second sleep in place
for the computation.
BD-CATS-IO [35] is an I/O kernel similar to that of the BD-
CATS algorithm, where particle data written by plasma physics
[36] and astrophysics [37] are read from HDF5 files. Big Data
Clustering at Trillion Particle Scale (BD-CATS) is a highly
scalable version of DBSCAN clustering [7]. In our tests, we
read the data written by the VPIC-IO kernel. This I/O kernel
reads all the time steps’ data, and the clustering computation
was replaced with 30 seconds of sleep time.

C. Applications

In addition to I/O kernels, we evaluate three large scale
real science simulations. These simulations are similar to
the I/O kernels which use a checkpoint-based approach with
distinct computation and I/O phase per epoch. We also evaluate
a machine learning workload, Cosmoflow, to demonstrate
our methodology can extend beyond just simulation and
checkpoint-based workloads. For each of the full workloads,
we use configurations based on publicly available data sets to
demonstrate a strong scaling scenario to evaluate our model.
Nyx [37] is a massively parallel, adaptive mesh, cosmology
simulation code that uses the AMReX framework [38] for
computation and performing I/O. In each I/O phase, Nyx
outputs a single plotfile in the HDF5 format containing infor-
mation for visualizations. We run two configurations for Nyx:
small and large. The former runs at 256x256x256 dimensions
and writes a plotfile every 20 time steps; the latter runs at
2048x2048x2048 dimensions and writes a plotfile every 50
time steps. We set the initial I/O frequency based on our
discussion with the domain scientists in real world use cases
where the number of I/O phases is reduced to increase overall
throughput. We do an additional experiment where we vary
the duration of the compute phase to understand how partial
overlap of data movement can affect overall throughput.
Castro [39] is another cosmology simulation solving com-
pressible radiation / MHD / hydrodynamics equations for
astrophysical flows using adaptive mesh resolutions. Castro
also uses the AMReX framework for computation and per-
forming I/O, which is implemented with synchronous or asyn-
chronous I/O using HDF5. We run the Castro simulation at
128x128x128 dimensions with 6 components in each multifab
and 2 particles per cell.
EQSIM [40] is an earthquake simulation framework using
SW4, a 3D seismic modeling code that solves fourth order
accurate wave equations. We compare synchronous and asyn-
chronous modes of HDF5 output with SW4. We ran the sim-
ulation at grid size 50 with 30000x30000x17000 dimensions
and checkpoint every 100 time steps. The simulation size does
not increase as we scale up the compute resources, thus also
demonstrating a strong scaling scenario.
Cosmoflow [41] is a deep learning tool to process large
3D matter distributions using convolutional neural network
(CNN) and predict cosmological parameters. We used the pub-
licly available Cosmoflow 1283 voxels dataset. We compare
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synchronous and asynchronous modes of a custom PyTorch
DataLoader. We run each scaling scenario for 4 epochs with
batch size set to 8.

V. EVALUATION

A. Evaluation of I/O Rate

We focus on the scalability of I/O performance across
nodes in HPC systems to validate our model. Our results are
split into two categories: I/O kernels composed of primarily
I/O component of a real-world application (VPIC-IO, BD-
CATS-IO) to evaluate the performance model, and four real-
world large scale applications to evaluate the efficiency of
asynchronous I/O at different scales. We measured the time to
perform read or write operations from HDF5. The measured
time of read or write operations includes the transactional
overhead. We derived the I/O rate (shown as “Aggregate
bandwidth” in the plots) that was observed over all the I/O
phases of a benchmark or an application. We vary the number
of MPI ranks (6 per node on Summit and 32 per node on
Cori-Haswell) while measuring the aggregate bandwidth.

1) VPIC-IO (write): With the VPIC-IO kernel, we compare
the measured I/O performance in synchronous and asyn-
chronous modes. Using the configuration described in Section
IV-B, the VPIC-IO benchmark captures write performance
that varies as we increase the data size proportionally to the
number of MPI Ranks (i.e., weak scaling). We include the peak
measured aggregate bandwidth for all I/O phases in a bar plot
in Fig. 3a and 3b. We run each configuration at least 5 times
across multiple days to account for interconnect and storage
system contention amongst other applications running on the
system. In these figures, we compare the synchronous write
performance and asynchronous write performance on Summit
and Cori-Haswell systems, respectively. The asynchronous
aggregate bandwidth demonstrates the ideal scenario described
in Section III-A, where the compute phase is sufficiently large
enough to completely overlap the I/O phase. We manually tune
the length of the simulated computation phase to completely
hide the asynchronous I/O time. This means the performance
of the asynchronous epoch is based on the performance of the
transactional overhead.

We note the aggregate bandwidth scales similarly between
both systems for both synchronous and asynchronous epoch
in a weak scaling scenario. The synchronous aggregate band-
width saturates at 768 MPI Ranks (128 nodes) on Summit
and 1024 MPI Ranks (32 nodes) on Cori-Haswell, while the
asynchronous aggregate bandwidth scales linearly based on the
constant bandwidth of the transactional overhead (see Section
III-B). Our model fits well with the trend of synchronous write
aggregate bandwidth which is based on a linear-log regression
and shown as a dotted line in Fig. 3. The asynchronous write
aggregate bandwidth scales linearly based on the constant
bandwidth of the transactional overhead described in Section
III-B1.

2) BD-CATS-IO (read): We run the BD-CATS-IO bench-
mark using the configuration described in Section IV-B. We
increase the data size proportionally to the number of MPI

Ranks (weak scaling). To profile performance of asynchronous
read operations, we use the prefetching capabilities of the
HDF5 asynchronous I/O VOL connector. In the current imple-
mentation of the VOL connector, prefetching is triggered after
reading data for the first time step. The first read is a blocking
operation (i.e., synchronous) since there is a dependency on
the data for the first computational phase. We measured the
total read time observed by the BD-CATS-IO kernel. This I/O
kernel reads the data written by VPIC-IO in multiple time
steps, and we include a simulated compute time in between
the I/O phase to demonstrate an asynchronous epoch.

In Fig. 3c and 3d, we compare synchronous and asyn-
chronous I/O on Summit and Cori-Haswell, respectively. The
aggregate bandwidth value in GB/s is calculated, which is
the ratio of the data read and the I/O phase time. As it can
be observed, asynchronous I/O achieves superior performance
improvement over synchronous I/O for reading data from
subsequent time steps after the first time step. Since the I/O
time is overlapped with a simulated computation phase on
Summit and on Cori, the calculated bandwidth values for
asynchronous I/O are orders of magnitude higher than those
observed with synchronous I/O. The estimated values from our
regression are also shown in these plots, which are matching
with the measured bandwidth values well– similar to the write
scenario.

3) Nyx: Since Nyx has an option to use GPUs, we run it
with two separate configurations as described in Section IV.
Due to space limitation, in Fig. 4a, we show the observed
bandwidth of file I/O on Summit with the large configuration
sizes, and in Fig. 4b, we show the performance of file
I/O on Cori-Haswell with the small configuration. For each
configuration, we scale the number of MPI ranks with the
same dataset size (strong scaling).

On Summit, the aggregate bandwidth of synchronous I/O
decreases slightly as we increase the number of MPI ranks.
Similar to the trend we observe with Castro, since each
MPI rank has to operate on a smaller amount of data, the
overall throughput decreases. This is the opposite for the
asynchronous I/O mode, since a smaller size of data will
result in faster transaction time, thus reducing the overhead.
With complete overlap of the computational and I/O phases,
the asynchronous I/O performance scales up linearly with the
number of MPI ranks.

However, on Cori-Haswell, we observe the small data size
of each request leads to poor synchronous aggregate write
performance at all scales, and the asynchronous aggregate
write bandwidth does not scale up linearly. Even though the
computation time can overlap the I/O time to the file system
fully, the asynchronous write performance is limited by the
transactional overhead on Cori-Haswell. The data decreases
in size and is not enough to saturate even the bandwidth of
the on-node DRAM. When we increase the number of MPI
ranks, each rank is operating on a smaller amount of data.
This results in the aggregate performance of synchronous I/O
to not scale up as the number of MPI ranks increase.
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(b) VPIC-IO on Cori
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(c) BD-CATS-IO on Summit
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(d) BD-CATS-IO on Cori
Fig. 3: A comparison of the aggregate bandwidth (log scale) of the I/O kernels (weak scaling) between synchronous and
asynchronous modes. The estimated performance is shown as a dotted line.
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(b) Nyx on Cori
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(c) Castro on Summit
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(d) Castro on Cori
Fig. 4: A comparison of aggregate bandwidth (log scale) of two large scale cosmology simulations between synchronous and
asynchronous modes with estimated performance shown as a dotted line.

4) Castro: We run Castro using the configuration described
in Section IV. Using the same data size, we scale the number
of MPI Ranks across multiple nodes. This allowed us to see
how the file I/O scales with synchronous I/O and asynchronous
I/O modes. In Fig. 4c and 4d, we show the aggregated
bandwidth reported on Summit and Cori-Haswell systems,
respectively. Since the dataset size remains constant with the
number of MPI ranks (strong scaling), the amount of data each
rank processes and writes decreases proportionally for writing
plot files.

As a result, with the number of ranks increasing, the
individual node bandwidth to the parallel file system decreases
similar to EQSIM. On Summit, we see for synchronous I/O
the aggregate bandwidth decreases as we scale up the number
of MPI Ranks. On Cori-Haswell, we see the synchronous I/O
performance increases until it saturates at 2048 MPI Ranks.
This scaling of the synchronous I/O rate differs between the

two systems primarily because of how the Alpine file system
on Summit allocates storage resources. The GPFS does not
provide a way for the user to declare striping for file or
directories; instead, it is tuned to react to the workload. In
this case, we can see that a strong scaling scenario impacts
the observed aggregate I/O rate to the file system when we
decrease the data size for each MPI Rank as we scale up.

With asynchronous I/O enabled, we see the opposite trend.
On Summit and Cori-Haswell, the computational phase is
sufficiently large to completely hide the I/O cost. This results
in a linear speedup on both systems, since the cost to make a
transactional copy of the data is constant for each node.

5) Cosmoflow: We evaluate the I/O phase for Cosmoflow
training using the configuration described in Section IV. In
Fig. 5, we plot the aggregate read bandwidth for reading a
batch. For synchronous I/O, the performance does not scale
after 128 nodes; whereas, the asynchronous I/O is able to
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maintain a higher bandwidth. Our model is able to accurately
estimate the I/O performance based on the best maximum I/O
rates from previous iterations. We only run Cosmoflow on
Summit due to the availability of GPUs.
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Fig. 5: A comparison of aggregate bandwidth (log scale)
of Cosmoflow on Summit between synchronous and asyn-
chronous modes with estimated performance shown as a dotted
line.

6) EQSIM: We ran EQSIM by keeping the problem size the
same as we increase the number of MPI Ranks across multiple
nodes (i.e.,strong scaling). In Fig. 6, we plot the performance
difference between synchronous and asynchronous I/O on
Summit. Since the problem size remains the same as we scale
up, the size of the data on each rank decreases proportionally.
This causes the synchronous I/O performance to decrease
while the asynchronous I/O performance remains consistent.
We are able to model the performance of both I/O modes
accurately, as shown by the dotted lines in Fig. 6. We observe
similar trend with EQSIM on Cori as Castro, thus we omit
those results due to space constraints.
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Fig. 6: A comparison of aggregate bandwidth (log scale) of
EQSIM on Summit between synchronous and asynchronous
modes with estimated performance shown as a dotted line.

B. Impact of Computation and I/O Phase Overlap

1) Partial Overlap of Computation Phase: For iterative
simulations, a computation phase is composed of one or
more time steps before performing a checkpoint in an I/O
phase. The I/O frequency is a parameter that is configured by
the application developer. In all the above experiments, we
have explored the ideal scenario for asynchronous I/O where
computation phases were longer than I/O phases. To study the
impact of shorter computation phases, we experiment varying
the number of simulation time steps for each computation
phase. Partial overlap of computation and I/O phases can
decrease the effectiveness of asynchronous I/O.

In Fig. 7, we vary the number of simulation time steps per
computation phase on Nyx from 1 to 192. We recall that,
in our previous experiments (Fig. 4b), we configured Nyx so
as to perform a checkpoint every 20 time steps. In general,
increasing the check-pointing frequency (i.e., decreasing the
number of time-steps per computation phase) will increase
the duration of the application because more I/O is performed.
With asynchronous I/O, we see the impact of performing more
I/O is less pronounced than with synchronous I/O until the
computation phase becomes too short to overlap with the I/O
phase (at 1 time-step per computation phase).
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Fig. 7: A comparison of synchronous and asynchronous modes
with varying number of time steps per computation phase
for Nyx on Cori. The estimated application duration for each
mode is shown as a dotted line.

C. Factors Affecting Performance Predictability

The experiments above show that our empirical model can
make accurate estimations of the aggregate I/O bandwidth
achieved by applications both in strong and weak scaling
scenarios. For asynchronous I/O, we observed a very strong
linear correlation between the scaling factors (dataset size
and number of MPI Ranks) and the observed aggregate I/O
bandwidth, with an r2 above 90% for each estimation. In the
synchronous I/O case, while lower, the r2 consistently above
80% still shows good linear correlation. As noted in Section
III-B2, our goal was to model the ideal case performance (i.e.,
the maximum aggregate I/O bandwidth achieved) for both syn-
chronous and asynchronous I/O. This allowed high accuracy
using linear methods. In practice, however, the accuracy of
the model depends on the degree of contention, which can
vary based on workloads sharing the network and file system.
Where Node-level contention in HPC systems can be avoided
since with batch schedulers typically allocate entire nodes to
a single application, Full System-Level contention can cause
some variability in measurements.

The impact of contention on I/O in synchronous and asyn-
chronous modes at the full system level can observed as
variability across runs. For all of our experiments, we run each
I/O kernel and application in synchronous and asynchronous
modes at least 5 times across multiple days to account for
interconnect and storage system contention with other appli-
cations running on the system.

Fig. 8 plots all of the aggregate bandwidth measurements
for the VPIC-IO benchmark on Summit across multiple days.
As can be seen, a benefit of asynchronous I/O is to hide the
system-level variability, leading to consistent aggregate I/O
bandwidth independent of the full system-level contention.
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Fig. 8: A comparison of VPIC-IO performance variability on
Summit with I/O in synchronous and asynchronous modes.

VI. SUMMARY AND OUTLOOK

A. Lessons Learned

In this study we have provided a systematic approach to
quantify the benefits of asynchronous I/O. Although enabling
asynchronous I/O can alleviate I/O bottlenecks in most cases,
we found limitations for scalability in current implementations.
By measuring the performance of synchronous and asyn-
chronous I/O with I/O kernels and real-world applications, we
also identified key performance differences between two large-
scale high-performance computing systems. Although Sum-
mit’s GPFS storage is capable of a high aggregate bandwidth
for synchronous I/O, the performance is heavily dependent on
the data size and number of nodes. Both of these parameters
affect how Summit’s storage system allocates I/O resources
to an application. Performance of synchronous I/O on Cori-
Haswell also depends on the number of nodes; however, the
user is given more control on the allocation of I/O resources
for each application (for example, by setting the stripe count).
We note that the data size and number of nodes impact how
much of the synchronous I/O we can saturate before reaching
the limits of the resources selected.

Typically, the performance scalability of an application
depends on whether it increases the problem size for more
resources, weak scaling, or keeps the problem size constant,
strong scaling. From this study, we note that this also applies
to the performance scalability of I/O, whether synchronous
or asynchronous. For strong scaling applications, I/O latency
can become a bottleneck for asynchronous I/O due to smaller
data sizes. The cost to setup the data transfers relative to
the amount of data being transferred decreases the effective
bandwidth for the I/O requests. Nonetheless, we find that
asynchronous I/O enables more predictable performance of
I/O requests. By using a buffering location that is not being
shared across multiple users or workloads, such as in-node
memory or SSD, we can hide I/O performance variability
with asynchronous I/O. These trade offs on both systems
and applications will impact how a user of these checkpoint-
based applications configures the I/O frequency. The proposed
methodology allows to accurately estimate the aggregate I/O
bandwidth achieved by asynchronous I/O (in the absence of
node-level oversubscription), and the ideal aggregate band-
width achieved by synchronous I/O (in the absence of full
system-level contention).

B. Conclusions

In this study, we have taken the first steps of understanding
the benefits and limitations of asynchronous I/O. We have
proposed a simple performance model to estimate the ag-
gregate I/O bandwidth achievable by an application based
on past iterations with both synchronous and asynchronous
I/O. We have validated our model and performed an extensive
experimental evaluation of synchronous and asynchronous I/O
on two large-scale HPC systems, Summit and Cory-Haswell,
using two I/O kernels and four real-world science applications
run at scale. In our experiments, we have used the HDF5
asynchronous I/O feature. Our evaluation and analysis have
highlighted benefits and limitations of asynchronous I/O based
on application characteristics and data transfer setup costs.
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