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Abstract—Sparse tensors are prevalent in many applications.
While numerous approaches have emerged to optimize the
organization of sparse tensors, with the goal of reducing storage
requirements and enhancing access performance, a comprehen-
sive examination of the associated time and space complexities
has been notably lacking. This study bridges this gap by con-
ducting both theoretical and empirical investigations into various
strategies for storing sparse tensors. Our major findings are
as follows: (1) Linear address-based organization provides the
best balance between storage size and access time; (2) Sparse
high-dimensional tensor data can be transformed into lower-
dimensional tensors, facilitating efficient storage and access;
(3) In the absence of dimension transformation, tree-structured
organizations offer compelling performance in low-dimensional
tensors and exceptional performance in high-dimensional tensors.

Index Terms—Sparse Tensor, High-dimensional Tensor, Orga-
nization, Time complexity, Space complexity, GCSC++, GCSR++,
CSF, Compressed Sparse Fiber, TileDB, HDF5

I. INTRODUCTION

Sparse tensors [1, 2] capture complex high-dimensional
data with numerous zeroes aiming to conserve both storage
space and computational resources. They play a pivotal role
in diverse fields, including scientific simulations and machine
learning, enabling the modeling of real-world phenomena
with unparalleled accuracy. Their importance stems from their
ability to handle vast and intricate datasets while preserv-
ing essential information, ultimately driving advancements in
problem-solving across a multitude of applications.

Sparse tensors have been extensively studied from different
perspectives, including sparse tensor algebra [3, 4], CPU
access performance [5, 6], and sparse tensor organizations [7].
This work focuses on sparse tensor organizations for storage,
which typically include in-memory representations [7–9] and
external storage representations [10, 11]. We aim to address
the following research questions in this work:
• What is the state of the art in the storage organizations for

high-dimensional and sparse tensors? A storage organization
represents the physical layout (or sometimes called materi-
alization or storage format) of sparse tensors.

• What are the theoretical limits for time complexity and
space complexity of these sparse tensor organizations? A
theoretical analysis plays a fundamental role in comparing
various sparse tensor organizations. It can provide insights
into the inherent trade-offs between storage efficiency and
computational performance.

• How to design an experimental system to verify theoretical
analysis results for sparse tensor organizations?

To answer these questions, we conducted a comprehensive
survey of recent advancements in data organization methods
for sparse tensors. Through this survey, we identified five
popular data organizations, including coordinate-based organi-
zation (COO) [10], linear-addresses-based organization (LIN-
EAR) [10], Generalized Compressed Sparse Row/Column
organization (GCSC++/GCSR++) [12, 13], and Compressed
Sparse Fiber organization (CSF) [14, 15]. We analyzed the
theoretical limits of these sparse tensor organizations in terms
of their time and space complexities. Additionally, we selected
three general sparsity patterns observed from real-world ap-
plications for our verification of these theoretical performance
bounds. Subsequently, we designed and developed a general
benchmark system to assess these sparse tensor organizations
within these three general patterns. Our major findings include:
• The choice of storage organization for sparse tensors signif-

icantly impacts both read and write performance.
• The LINEAR organization, based on linear addressing,

strikes the best balance between storage size and access
performance for sparse high-dimensional tensors.

• GCSR++ and GCSC++ can transform high-dimensional and
sparse tensors into lower-dimensional equivalents, thereby
facilitating efficient storage and access.

• Tree-based organizations, exemplified by Compressed
Sparse Fibers (CSF), offer an alternative approach to storing
high-dimensional and sparse tensors without the need to
transform coordinates into lower-dimensional ones.

• GCSC++ and GCSR++ can achieve better performance in
organizing sparse tensors when their layouts are aligned with
their preferred data access patterns.

• The Coordinate List (COO) organization can save time
in building organizations (assuming the input data are
coordinate-based as well). However, this time-saving advan-
tage may be lost by the need to write large result files to
disk or the high cost associated with accessing them.

II. STORAGE ORGANIZATIONS OF SPARSE TENSORS

We explore five storage organizations for sparse tensors.
Spatial hash [16] and R-tree [17] are not within the scope
of this work, as they are primarily used to index blocks of
points. Our focus is on general data organizations that can
represent sparse points within these blocks when necessary.
These organizations can also be applied when a sparse tensor
is stored and accessed as a whole entity.

While general compression algorithms are effective for
reducing data size, including sparse tensors, the fundamental
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COO LINEAR Value
(0, 0, 1) 1 v1
(0, 1, 1) 4 v2
(0, 1, 2) 5 v3
(2, 2, 1) 25 v4
(2, 2, 2) 26 v5

(a) COO and LINEAR

rowptr : 0, 3, 5, 5
colind: 0, 3, 4, 6, 7
values: v1, v2, v3, v4, v5

(b) GCSR++

colptr : 0, 3, 3, 3, 3, 5, 5, 5, 5, 5
rowind: 0, 0, 0, 2, 2
values: v1, v2, v3, v4, v5

(c) GCSC++
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Fig. 1: Representation of an example 3D sparse tensors with size 3× 3× 3 in different organizations.

data organizations considered in this paper are orthogonal
to these compression techniques. Common practice in the
community, as observed in systems like TileDB [10] and
HDF5 [18], is to choose a basic sparse organization first and
then apply compression algorithms to further reduce data size.
In addition to introducing the details of these sparse tensor
organizations, we also analyze their time complexity and space
complexity, as defined below:
• Time Complexity refers to the time required by corre-

sponding algorithms to construct the organizations for sparse
tensors with n non-empty cells.

• Space Complexity refers to the storage space necessary
for storing the sparse tensors. We estimate the space size
required (in units of the index type’s size) to accommodate
n points in sparse tensors. The analysis of space complexity
does not account for the storage of values, as their size
remains constant across all organizations. We also disregard
metadata [19] such as tensor size, as these values remain
consistent and are small enough to be negligible.

A. Coordinate COO Organization–The baseline

The input of our sparse tensor is assumed to be an unsorted
1D coordinate vector. This favors the COO organization for
efficient building, Therefore, we will only consider the COO as
the baseline of our analysis. The COO organization provides a
straightforward means of representing sparse tensors. It is par-
ticularly well-suited for tensors with a relatively low number
of non-zero elements. An example of the COO organization
for a 3D sparse tensor is depicted in Fig. 1(a). Both the COO
column and the Value column are serialized independently into
1D buffers. These two buffers are concatenated and written
into a single fragment. The time complexity to build COO
organization is O(1). Conversely, the time complexity to read
COO organization is O(n× nread), where nread denotes the
number of points to be read, and n represents the number of
points to be checked.

Sorting the coordinates can reduce the complexity of read to
O(max{n, nread}), but it may takes extra time: O(n log(n))
to sort before write and will have O(nread log(nread)) in
read. So, there are some trade-off to consider here, For
simplify, we only consider the non-sorted version of COO
organizations. The space complexity of the COO organization
is O(d × n). Several variants of COO organizations, such as
F-COO [20] and HiCOO [21], exist as well. However, these
variants are optimized to accelerate specific applications like
SpMTTKRP [22] or are tailored for specific hardware like

GPUs. Therefore, our work focuses solely on the fundamental
COO organization from the perspective of a storage system.

B. LINEAR Organization

The LINEAR organization stores the linearized offsets of
coordinates in sparse tensors. An example of LINEAR or-
ganization is illustrated in Fig. 1(a). LINEAR organization
is particularly relevant when considering the performance
gap between CPUs and storage devices [23]. The LINEAR
organization invests extra time to transform the coordinates of
each sparse point into a linear address. However, this approach
leads to substantial storage space savings.

In this study, we use the row-major order to transform
coordinates into linear addresses. For a point with coordinates
(c1, c2, . . . , cn), its linear address is calculated as

∑n
i=1 ci ·∏n

j=i+1 mj . The time complexity for building LINEAR is
O(d × n), and the time complexity for reading LINEAR
is O(n × nread). The space complexity of the LINEAR
organization is O(n). The risk of using the LINEAR organi-
zation is that the overflow of linear address when converting
a multiple dimensional coordinates for an extremely large
tensor into a single value. A practical solution to this problem
is to break large tensors into small blocks, as most block
based structures [16] have done. Our algorithms can use local
boundary of each block to perform the transform.

C. Generalized Compressed Sparse Row (GCSR)

Compressed Sparse Row (CSR) [24], also known as Com-
pressed Row Storage (CRS), is a classic organization for
2D tensors (i.e., matrices). Generalized Compressed Sparse
Row (GCSR) [12] maps points from high-dimensional tensors
into 2D arrays and then uses CSR to store them. GCSR
uses fixed 2D tensors for its storage system. GCSR has been
implemented differently in [12] and [13]. This work uses the
implementation presented in Algorithm 1, which is referred as
GCSR++ in this paper. The GCSR++ BUILD converts input
coordinate vectors bcoor to GCSR format. It also returns a map
vector to reorganize the value if needed (see more details in
the section III and Algorithm 3). The GCSR++ READ get the
value for coordinates in bcoor.

We first extract the boundary from bcoor to determine the
size of the sparse tensor. We then calculate the size of the
resulting 2D arrays, selecting the smallest dimension as the
first dimension in the 2D array and multiplying the other
dimension sizes as the size of the second dimension. For each
point, we transform coordinates from bcoor to coordinates in
2D space. Once the transformation is complete, we sort the
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Algorithm 1 Build and Read algorithm used by GCSR++
1: function GCSR++ BUILD(bcoor)
2: Input: bcoor: buffer of coordinate to write
3: Output: b: buffer of compressed coordinates
4: map: records original index in sorting bcoor

5: sl ← Extract local boundary from bcoor
6: s2Dnew ← Select smallest dimensions in sl as the # of rows

and multiple the sizes of left dimensions as the # of columns in
the result 2D matrix.

7: for each point pcoor in bcoor do
8: lorig ← transformrow−major(pcoor , sl)
9: p2Dcoor ← reverse transformrow−major(lorig , s2Dnew)

10: b2Dcoor ← p2Dcoor ∪ b2Dcoor
11: end for
12: (b2D,s

coor ,map)← Sort b2Dcoor by the first dimension
13: (rowptr, colind)← Package b2D,s

coor with the CSR.
14: b ← rowsptr + colsind ▷ Concatenate buffers
15: return (b, map)
16: end function

1: function GCSR++ READ(bcoor)
2: Input: bcoor: buffer of coordinate to read
3: f : fragment metadata
4: Output: bdata: buffer of read data
5: (rowptr, colind)← Extract metadata from f
6: b2Dcoor ← Convert bcoor into 2D coordinates with same algo-

rithm in the above GCSC++ BUILD
7: for point pcoor in b2Dcoor do
8: l← rowptr[pcoor[0]], u← rowptr[pcoor[0] + 1]
9: if pcoor in (colind[l], . . . , colind[u]) then

10: d ← Get data of pcoor from f
11: bdata ← bdata ∪ d
12: end if
13: end for
14: return bdata
15: end function

points based on the coordinates of the first dimension (rows)
of the 2D array. After sorting, we use the CSR algorithm [24]
to package the sorted coordinates, resulting in a row pointer
(rowptr) and a column coordinate vector (colind). We show
an example of GCSR++ organization in Fig. 1(b).

The GCSR++ BUILD function comprises two major steps:
transforming the coordinates and sorting the points. Con-
sequently, the time complexity of GCSR++ BUILD is
O(n log(n) + 2 × n), where the n log(n) complexity arises
from the sorting steps, and 2 × n complexity arises from the
steps involving the transformation of the coordinates and the
construction of the CSR structure. The space complexity of
GCSR++ is O(n + min {m1, . . . ,md}) for a sparse tensor
containing n points. Essentially, GCSR++ stores the row
indices for each point and also maintains pointers to the start
of each row in the index vector. GCSR++ exhibits a space
complexity that is very close to the LINEAR organization.

The GCSR++ READ function extracts rowptr and colind
from the fragment. Subsequently, it converts all coordinates
in bcoor into 2D tensors as well. Afterward, it reads each
points only by searching a row. The current implementation
of GCSR++ READ does not sort b2Dcoor like GCSR++ BUILD
does. The primary reason for this is that sorting incurs

Algorithm 2 Build and Read Algorithm for CSF Tree
1: function CSF BUILD(bcoor)
2: Input: bcoor: buffer of coordinate to read
3: Output: b: buffer of compressed coordinates
4: map: records original index in sorting bcoor

5: sl ← Extract local boundary from bcoor
6: ssl ,m

dim ← Sort slocal in ascending order, mdim records
map from original dimension to new dimension

7: bscoor,map ← Sort bcoor based on the mdim

8: Initialize nfibs[1, . . . , d][. . .], fids[1, . . . , d][. . .], and
fptr[1, . . . , d− 1][. . .] ← 0
//Build leaf nodes of the last dimension r

9: nfibs[d− 1] ← # of points in bcoor
10: fids[d− 1] ← unique indexes in dimension r − 1

//Build root nodes of dimension 0
11: nfibs[0] ← # of unique indexes in dimension 0
12: fids[0] ← unique indexes in dimension 0
13: fptr[0] ← the split index in dimension 0

//Build nodes from root to leaf
14: for i← 1 to d− 1 do
15: fids[i] ← unique indexes in dimension i
16: nfibs[i] ← # of unique indexes in dimension i
17: Update fptr[i] based on fptr[i− 1]
18: end for
19: b ← nfibs + fids + fptr ▷ Concatenate buffers
20: Return (b, map)
21: end function

1: function CSF READ(bcoor , f )
2: Input: bcoor: buffer of coordinate to read;
3: f : fragment metadata
4: Output: bdata: buffer of read data
5: (nfib, fptr, fids) ← Extract metadata from f
6: for each point pcoor in bcoor do
7: l = 0, u = nfib[0]
8: found=TRUE
9: for i← 0 to d− 1 do

10: if pcoor[i] ∈ fids[l : u] then
11: fi ← index of pcoor[i] ∈ fids[l : u]
12: l = fptr[fi], u = fptr[fi+ 1]
13: else
14: found = FALSE
15: break
16: end if
17: end for
18: if found then
19: d ← Get data of pcoor from f
20: bdata ← bdata ∪ d
21: end if
22: end for
23: return bdata
24: end function

a time complexity of O(nread log(nread)). In contrast, the
current implementation has a time complexity of O(nread ×

n
min {m1,...,md}+n), where nread denotes the number of points
in b2Dcoor being searched, n the one pass to transform the
coordinates, and n

min {m1,...,md} the average number of points
in each row to compare for each read point.

D. Generalized Compressed Sparse Column (GCSC)

GCSC++ is very similar to the GCSR++ algorithms in build-
ing and reading sparse tensors. To avoid the repetition of the
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TABLE I: The Time and Space Complexity of Using Different Organizations to Store and Access Sparse Tensors.

Layouts Time Complexity of Building Time Complexity of Reading Space Complexity
COO O(1) O(n× nread) O(n× d)

LINEAR O(n× d) O(n× nread) O(n)

GCSR++ O(n× log(n) + 2× n) O(nread × n
min {m1,...,md}

+ n) O(n+min {m1, . . . ,md})
GCSC++ O(n× log(n) + 2× n) O(nread × n

min {m1,...,md}
+ n) O(n+min {m1, . . . ,md})

CSF O(n× log(n) + n× d) O(nread × n
d
) O(n× d)

same contents, we will ignore the detailed description of the
GCSC++ in the paper. An example of GCSC++ organizations
is presented in Fig. 1(c). In the following parts of this subsec-
tion, we only list the major differences between GCSC++ and
GCSR++: (1)instead of selecting the min {m1, . . . ,md} as the
size of rows, GCSC++ selects the minimum size of the original
tensor as the size of columns in the result 2D tensor; (2) After
transforming the bcoor to the b2Dcoor, GCSC++ sorts all points by
their column index; (3) The result 2D tensor is packaged with
the classic Compressed Sparse Column (CSC) algorithm; (4)
GCSC++ reads points column by column. In general, the space
complexity for the GCSC++ is O(n + min {m1, . . . ,md}).
The time complexity for the build algorithm for GCSC++
is O(n log(n) + 2 × n). The time complexity for the read
algorithm for GCSC++ is O(nread × n

min {m1,...,md} + n).

E. Compressed Sparse Fibers (CSF)

The Compressed Sparse Fibers (CSF) data organization [14,
15] provides a generalization of data organization for high-
dimensional sparse tensors. We show an example of CSF or-
ganizations in Fig. 1(d). CSF uses a tree structure to represent
sparse tensors. The number of levels in this tree corresponds to
the number of dimensions of the sparse tensors. At each level
of the tree, CSF strives to minimize duplicated coordinates. In
the subsequent sections of this subsection, we will elaborate
on the methods for constructing the CSF tree, materializing it,
and retrieving data through tree-based queries.

Following the established algorithms outlined in [14, 15],
the CSF tree can be represented using three key data structures:
nfibs[1, . . . , d]: a 1D vector records the count of coordinates
at each level; fids[1, . . . , d][. . .]: a 2D vector that stores all co-
ordinates at each level; fptr[1, . . . , d−1][. . .]: a 2D vector that
records the split index from the previous dimension to the cur-
rent dimension. For instance, referring to the example we pro-
vided in Fig. 1(d), the data structures are populated as follows:
nfibs = {2, 3, 5}, fids = {{0, 2}, {0, 1, 2}, {1, 1, 2, 1, 2}},
and fptr = {{0, 2, 3}, {0, 1, 3, 5}}.

The CSF BUILD function in Algorithm 2 identifies the
local boundary size, denoted as sl, from the bcoor tensor.
These sizes are then sorted in ascending order to maximize
the opportunity for reducing duplicated coordinates in the first
dimension (i.e., the root node). Simultaneously, this sorting op-
eration helps reduce the size of the leaf nodes. Because sorting
sl may alter the order of data in the buffer, CSF BUILD en-
sures that the bcoor buffer is sorted accordingly. CSF BUILD
initializes the data structures fids, fptr, and fptr. Subse-
quently, it proceeds to create the leaf nodes of the CSF tree
starting from the last dimension. Following this, CSF BUILD
creates the root nodes of the CSF tree, beginning with the

first dimension. The intermediate nodes of the CSF tree are
constructed by identifying unique coordinates for each branch
of nodes in the previous level, with these unique coordinates
being stored in fids. The fptr is updated accordingly for
each intermediate level. Finally, the buffers containing fids,
fptr, and fptr are serialized and concatenated into a single
buffer at the conclusion of the algorithm. The time complexity
of CSF BUILD is O(n log(n) + n × d), where the n log(n)
term arises from the sorting algorithms, and the n × d term
originates from the steps involved in building the CSF tree.

The space complexity for the CSF BUILD organization is
highly dependent on the characteristics of the input sparse
tensors: (1) Worst Case: In the worst-case scenario, where
there are no duplicated coordinates from the root to the leaf,
and each point forms its own tree, the space complexity
for CSF is O(d × n). This occurs when there is maximum
divergence in the coordinate values. (2) Average Case: In
an average case, where approximately half of the points are
duplicated at each level of the CSF, the space complexity
for CSF is approximately O(2n × (1 − (1/2)d)). This case
represents a balance between duplication and divergence in
coordinate values. (3) Best Case: In the best-case scenario,
where only a single point exists in the non-leaf nodes (minimal
branching), the space complexity for CSF is O(n + d). This
case happens when the tree structure is very compact with
minimal branching. These space complexities give a clear
understanding of how the organization of data in CSF is
affected by the distribution of coordinates.

The CSF READ performs a search for each point in the
bcoor against the CSF tree. This search essentially involves
checking if the coordinate exists in the CSF tree starting from
the root. The fptr data structure helps narrow down the search
space for each point. The time complexity of the CSF READ
algorithm is indeed O(n × d). This linear time complexity
arises because, for each point, the algorithm traverses the CSF
tree from the root to locate the coordinate, and this process
is repeated for all n points. It’s an efficient algorithm for
querying sparse tensors organized in the CSF format.

In Table I, we provide a comprehensive overview of the time
and space complexities associated with different organizations
for storing and accessing sparse tensors.

III. EXPERIMENTAL EVALUATION OF DIFFERENT SPARSE
DATA ORGANIZATIONS AND ACCESS ALGORITHMS

We conducted our experiments on the Perlmutter supercom-
puter 1 at NERSC, which contains a minimum of 3072 nodes.
Each node has an AMD EPYC 7763 CPU. The system is

1https://www.nersc.gov/systems/perlmutter/
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configured with a Lustre fifile system. Our benchmarks are
based on Algorithm 3. The WRITE function takes three key pa-
rameters: bcoor, bdata, and m. The bcoor and bdata parameters
contain buffers for coordinates and data from a sparse tensor
to be written, respectively. The WRITE function transforms
bcoor into bnewcoor by calling functions of each organization. It
may reorganize bdata based on the new order, which is stored
in the map vector. The map[i] records the new index of the i-
th point in the new bnewcoor. It concatenates bnewcoor and bdata and
write result into a binary fragment file. The READ function
takes a parameter, bcoor. READ identifies all fragment files
that overlap with the coordinates in bcoor. For each discovered
fragment, READ extracts data from it and appends it to a list
L. The list L is structured with coordinate vectors and their
corresponding values. After retrieving data from all fragments,
READ sorts the data based on the linear address. Finally, READ
populates the buffer bdata from L.

TABLE II: Size and density of the synthetic data sets
Dimension and Size TSP CGP MSP
2D (8192× 8192) 1.67% 0.99% 0.19%
3D ( 512× 512× 512) 3.47% 0.99% 0.19%
4D (128× 128× 128× 128 ) 8.22% 0.90% 0.21%

A substantial collection of sparse datasets is readily avail-
able [25]. Assessing the efficiency of different sparse tensor
organizations across all these datasets is an impractical en-
deavor. Therefore, we commence by examining these datasets
comprehensively, subsequently distilling three prevalent pat-
terns characterizing sparse tensors:
• Tridiagonal Sparse Pattern (TSP): An example of TSP is

illustrated in Fig. 2(a). In TSP, values are concentrated along
the tridiagonal bands, while the remaining elements are
either zeros or missing values.It can be found in one-hot
encoding for categorical variables [26] and stencil comput-
ing for solving partial differential equations [27].

• General Graph Sparse Pattern (GSP): An example of GSP
is depicted in Fig. 2(b). GSP describes a tensor where
data points exist at random coordinates. GSP is frequently
observed in the adjacency matrices of graphs [28], which are
used for representing social networks or recommendation
systems. GSP can represent most tabular datasets.

• Mixed Sparse Pattern (MSP): An example of MSP is pre-
sented in Fig. 2(b). MSP pattern has a dense area among the
random sparse points. The MSP pattern is used by scientific
applications, such as the Linac Coherent Light Source
(LCLS) II experiment [29], to store their experimental data.
The Table II summarizes the synthetic datasets employed

for the evaluation of various organizations. These synthetic
datasets encompass dimensions ranging from 2D to 4D, ef-
fectively covering a wide range of sparse tensors studied.
The sparsity of these tensors has been carefully controlled to
remain under 10%. The data type for the synthetic data coor-
dinates is standardized as unsigned long long int, occupying
8 bytes of storage space o. Other data types should have the
same results. Additional factors governing the generation of
these synthetic datasets are elaborated upon as follows:

(a)TSP (b)GSP (c)MSP
Fig. 2: Three major patterns in sparse tensors.

• For the TSP, the length of the tridiagonal band is set to 9. In
the CGP, a (0,1) random number generator is employed to
determine whether a cell of the sparse tensor should have
a value (when the number is bigger than 0.99 threshold).
In the MSP, the probability threshold is increased to 0.999,
and the contiguous region is defined with a starting address
of (m1

3 , . . ., md

3 ) and a size of (m1

3 , . . ., md

3 ).
• In the reading test on sparse tensors, we extract a contiguous

region with a starting address of (m1

2 , . . ., md

2 ) and a
size of (m1

10 , . . ., md

10 ) from the sparse tensor. This region
covers independent points in TSP and CGP but includes
both independent points and contiguous points in MSP.

• Time measurements are taken in seconds for the WRITE
and READ function in Algorithm 3) using different storage
organizations. The size of the result files is measured in
bytes, representing the file stored in the Lustre file system.

Algorithm 3 Main Algorithm of Our Benchmark
1: function WRITE(bcoor, bdata)
2: Input: bcoor : buffer of coordinate to read
3: bdata: buffer of data to write

4: (bnew
coor,map)← Call BUILD function of an organization to package bcoor

5: Reorganize bdata based on map if necessary
6: bfrag ← bnew

coor + bdata ▷ Concatenate buffers
7: Write bfrag as a fragment f
8: end function
1: function READ(bcoor)
2: Input: bcoor : buffer of coordinate to read
3: Output: bdata: buffer of data to read

4: F ← Find all fragments containing bcoor
5: L ← Initialize empty list of ⟨coor, value⟩
6: for each fragment f in F do
7: bfrag

coor ← Extract and unpack index from f
8: bcomcoor ← bcoor ∩ bfrag

coor
9: bcomdata← Read values of bcomcoor from f with organization-specific methods,

such as CSF READ() in Alg.2 and GCSR++ READ in Algo. 1
10: Append ⟨bcomcoor, b

com
data⟩ to L

11: end for
12: Sort L based on linear address
13: Extract value from L into bdata

14: return bdata

15: end function

A. The Time of Writing Sparse Tensors

The process of writing sparse tensors involves several
steps. Hence, the time of writing include the time required
to construct the structures for coordinates, the time needed
to reorganize values, and the time taken to write both the
coordinates and values to fragments to Lustre. In the preceding
section, we presented our predictions for the time required to
build coordinate structures and ranked in the following order
from the fastest to the slowest: COO > LINEAR > GCSR++
≥ GCSC++ > CSF. The actual measured times for writing
sparse tensors are presented in Fig. 3. Our experiments align
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with the trends predicted by our theoretical analysis. Specif-
ically, both COO and LINEAR outperform CSF, GCSR++,
and GCSC++. However, it is worth noting that while our
theoretical analysis suggests that COO should be faster than
LINEAR, our experimental results indicate the opposite. To
shed light on this discrepancy, we provide a breakdown of the
time taken by the write function in Table III.

As the data reveals, the actual time required for COO is
negligible (zero), whereas for LINEAR, it amounts to 0.0109
seconds. This finding aligns with our theoretical analysis.
However, it is important to note that the time it takes for COO
to write the organizations of sparse tensors to the Lustre file
system is nearly three times longer than that of LINEAR. As
we will delve into in the next section, COO results in a file that
is four times larger in size. Consequently, COO spends more
time writing data to the file system, making it slower than
LINEAR in terms of overall writing performance. In essence,
while COO can save time in constructing the organization, it
incurs a time cost in saving a larger result file.

TABLE III: Breakdown for the total time to write sparse
tensors for the 4D MSP pattern.

COO LINEAR GCSR++ GCSC++ CSF
Build 0 0.0109 0.1888 0.4484 0.3014
Reorg. 0 0 0.0073 0.0195 0.0073
Write 0.1217 0.0504 0.0493 0.0513 0.0751
Others 0.0177 0.0167 0.0179 0.0174 0.0179
Sum 0.1393 0.0780 0.2634 0.5366 0.4017

Another noteworthy disparity between our theoretical pre-
dictions and the experimental findings pertains to GCSC++.
According to our theoretical analysis, GCSC++ should exhibit
faster performance compared to CSF and be on par with
GCSR++. The critical point to highlight is that GCSC++ and
GCSR++ share the same underlying algorithmic implementa-
tion. Their primary distinction lies in the data layout within
the buffer. The implementation of Algorithm 3 takes input in
a row-major ordering, which aligns seamlessly with the access
pattern of GCSR++ but doesn’t correspond to the data access
sequence in GCSC++. This discrepancy significantly impacts
the performance of line 12 and line 13 in Algorithm 1, as well
as the time required for value reorganization. This is clearly
evident in the breakdown of time presented in Table III, where
GCSR++ and GCSC++ demonstrate similar times for writing
organizations, indicative of similar organization sizes. How-
ever, the substantial difference arises from the time needed
to construct these organizations. As previously elucidated,
this disparity arises because the input coordinate buffer for
GCSC++ is in row-major ordering, whereas GCSC++ must
convert it into column-major ordering during the sorting
process. In summary, GCSC++ and GCSR++ can indeed
exhibit superior performance when their buffers are organized
according to their respective layouts.

B. File Size of Different Organizations for Sparse Tensors

The size of the resulting file in a storage system constitutes
another critical factor when comparing various organizations

for sparse tensors. Typically, users prefer the file size to be as
compact as possible. The experimental results, quantifying the
sizes of result files for different organizations, are presented in
Fig. 4. In our theoretical analysis, we ranked the organizations
as follows: LINEAR < GCSR++ ≤ GCSC++ ≤ CSF ≤ COO.

Evidently, our experimental results substantiate the rankings
established in our theoretical analysis. Additionally, our exper-
iments confirm that CSF indeed exhibits variable space sizes
across different sparse patterns. Even for the same pattern,
such as MSP, CSF shows significant variations in size from 2D
to 4D. As previously mentioned, this variability arises because
CSF’s space complexity ranges from O(n+ d) to O(n× d).

Furthermore, we note that both GCSR++ and GCSC++
yield very similar file sizes, slightly larger than LINEAR. This
similarity arises from the fact that they only store additional
pointers for the number of rows or columns. When considering
COO as the baseline, the potential reduction in storage space
can be as much as O(d) times.

C. Time for Reading Sparse Tensors

The process of reading sparse tensors encompasses several
key steps. These steps involve the time required to retrieve
and extract metadata (index) from fragments, the time spent
querying the existence of a value within the index, and the
time needed to retrieve the value into the output buffer. Among
these steps, the time allocated to querying the existence of a
value in the index is particularly significant. Our theoretical
analysis yields the following ordering for the time required to
query the existence of a value for different organizations: CSF
≥ GCSR++ ≥ GCSC++ > LINEAR ≥ COO.

Our experimental results are depicted in Fig. 5, and for
the most part, they corroborate the findings of our theoretical
analysis. Specifically, COO and LINEAR exhibit significantly
slower performance compared to GCSR++, GCSC++, and
CSF. However, there is an exception when it comes to CSF,
particularly in its application to organizing 2D sparse tensors.
In the context of 2D sparse tensors, CSF should theoretically
be faster or at least on par with GCSR++ and GCSC++.

The primary reason for this phenomenon lies in the fact that
GCSR++ and GCSC++ essentially represent the 2D CSR and
CSC structures. As a result, there is no overhead associated
with coordinate transformation for GCSR++ and GCSC++. As
indicated by the time complexity analysis presented in Table I,
the read time complexity of GCSR++ and GCSC++ increases
as the number of dimensions rises. Conversely, the read time
complexity of CSF decreases as the number of dimensions
decreases. Consequently, CSF exhibits lower performance
when handling 2D tensors but surpasses the performance of
GCSR++ and GCSC++ when dealing with 3D or 4D tensors.

TABLE IV: Overall scores of different organizations
COO LINEAR GCSR++ GCSC++ CSF

Scores 0.76 0.34 0.36 0.50 0.48

IV. LESSONS LEARNED

Based on our experimental results, we can highlight the
valuable insights we’ve gained from this study:
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Fig. 3: Writing Time of Different Storage Organizations for Sparse Tensors with TSP, GSP, and MSP patterns
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Fig. 4: File Size of Different Storage Organizations for Sparse Tensors with TSP, GSP, and MSP patterns
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Fig. 5: The time required to read sparse tensors organized using various storage schemes.
• Trade-offs Between Write, Read and File Siz. Over-

all, the LINEAR has the highest scores in provid-
ing balanced performance among the time of access
and the file size. GSCR++ has very close score to
the LINEAR. The score (s̄) is defined as below:
s̄ = 1

wpattern
i

∑TSP, GSP, MSP
( 1
wdimension

i

∑2D, 3D, 4D
ri), ri =

mi

max {m1,m2,m3,m4,m5} , i ∈ {1, 2, 3, 4, 5}, where mi is the
measurement of each metric for each organizations and it is
normalized as ri with maximum value of all organizations.
The ri is summarised with weight for patterns. Here we as-
sume all weights are equal. Scores of different organizations
are presented in Table IV.

• Locality is preserved very well by transferring high-
dimensional and sparse tensors to 2D tensors for storage and
access with GSCR++ and GCSC++. GCSC++ and GCSR++
have better performance in writing high-dimensional and
sparse tensors when their buffer. COO can save time in
building organization but it pays back with time to save
larger result file. LINEAR spends a bit extra time to linearize
coordinates but it save the time to write result file to disk.

• The file size can be significantly reduced (at most O(d))
by converting high-dimensional and sparse tensors into

low-dimensional and sparse tensors. LINEAR, GCSR++,
GCSC++, and COO has determined size to organize sparse
tensors. CSF has significant variances in space size because
its tree structures to organize sparse tensors.

• CSF has good performance scalability in reading data from
the low-dimensional and sparse tensors to high-dimensional
and sparse tensors. GCSR++ and GCSC++ may suffer from
scalability issues from low-dimensional and sparse tensors
to high-dimensional and sparse tensors.

V. RELATED WORK

In the case of 1D sparse tensors (vectors), they are typically
stored using a “vector of pairs” approach. Most research efforts
in this domain have focused on 2D sparse tensors, with the
CSR and CSC formats [24] being the most classic. These
formats compress duplicated coordinates of one dimension
of 2D tensors using pointers. Variants of CSR and CSC,
such as block CSR or block CSC [30], have been proposed.
Unfortunately, these organizations are not directly applicable
to high-dimensional and sparse tensors.

Managing sparse tensors with more than two dimensions
has become crucial in the context of machine learning [31]
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and scientific activities [32]. Numerous efforts have aimed
to extend CSR and CSC for the storage of high-dimensional
sparse tensors. These efforts include GCRS/GCCS [12], py-
data/sparse [13], CISR [5], and CISS [6]. Among these,
GCRS/GCCS and pydata/sparse represent more general ex-
tensions from a storage perspective, while CISR and CISS
focus on cache-efficient optimizations when reading data from
memory into the CPU or hardware like FPGA. Another trend
involves exploring tree structures to store sparse tensors, offer-
ing a more general solution for high-dimensional and sparse
tensors. For example, Tensor algebra [4] organizes sparse
tensors as row-major coordinate storage trees or column-major
coordinate trees, while CSF [14, 15] provides a more versatile
representation for sparse tensors. Despite the merits and draw-
backs of different organizations, none of the existing work has
conducted a comprehensive study to compare them. To the best
of our knowledge, this is the first work to comprehensively
compare and study these representative approaches for high-
dimensional sparse tensor storage.

VI. CONCLUSION

After an extensive study of sparse storage formats, we iden-
tified key data organizations for a comprehensive investigation,
balancing theoretical analyses and empirical assessments. Our
findings highlight a storage organization’s pivotal role in
the performance of read and write sparse tensor. Our key
observations include: (1) Linear addressing strikes the best
balance between storage size and access time; (2) Trans-
forming high-dimensional tensor data into lower-dimensional
formats enhances storage and access efficiency; (3) Tree-
structured organizations excel in low-dimensional tensors and
perform exceptionally well in high-dimensional tensors with-
out dimension transformation. These insights contribute to
a nuanced understanding of sparse tensor storage formats,
guiding informed choices in practical applications. In future,
we plan to explore automatic strategies for selecting different
organization for applications based on the characterization of
sparsity in their data.
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