CSE 5449: Intermediate Studies in Scientific Data Management

Lecture 3: Intro to parallel computing and Software stack of storage and data management

Dr. Suren Byna

The Ohio State University

E-mail: byna.1@osu.edu

https://sbyna.github.io

01/17/2023

Summary of the last class

- Common data formats in science
 - Homework Present a few data structures in the next class
- Brief intro to data storage hierarchy
 - Hardware
 - Software
- Class projects

Send me an email if you have any questions regarding the homework or project topics

• Homework – Look at the project options and discuss in the next class

- Data format Student presentations (2 min each)
- Class projects questions
- A (very) brief intro to parallel computing
- Parallel I/O software stack

Data formats – Student presentations

Class projects

1. File format comparison

- A comparison of various file formats in performing I/O operations on sequential and parallel storage systems
- Prior work
 - <u>https://arxiv.org/pdf/2207.09503.pdf</u>
- Deliverable: A short paper comparing performance using real scientific data

2. A retrospection of metadata standards in scientific data

- Numerous metadata standards are available
- Question: What's their readiness to be used for finding desired datasets and knowledge in massive amounts of data?
- Deliverable: A short paper with a survey of metadata standards and their usefulness / readiness for querying desired data.

Class projects

3. Performance tuning of High Energy Physics I/O benchmarks

- Question: What's the performance of a realistic use case from a high energy physics benchmark that's representative of the CMS and the ATLAS experiments (from the Large Hadron Collider data sets)
- Benchmark: <u>https://github.com/Dr15Jones/root_serialization</u>
- Deliverable: A short paper describing the current performance and improved performance by applying various tuning options

4. Study of parallel I/O problems and solutions/optimizations explored so far

- Questions
 - What was the parallel I/O problem?
 - How did the authors find a parallel I/O problem?
 - What was the solution?
 - How was the solution applied to fix the problem?
- Background: Various papers available in literature
- Deliverable: A short paper surveying I/O problems, solutions applied, and exposing research gaps (an advanced version of this is a cookbook for I/O performance)

Class projects

5. Performance comparison of sub-filing in HDF5 and PnetCDF

- Background: Sub-filing is an approach to split a very large file into smaller files. However, there are pros / cons with the approach on how the data is organized.
- Question
 - Which of the HDF5 and PnetCDF sub-filing approaches are best?
 - What better strategies for sub-filing are there?
- Deliverable: A short paper describing

- Before today's class, look at the project topics
 - Discuss your class project interests with me in the next class
 - Think about why are you interested in any of the project topics

Very brief intro to parallel computing

• First – Sequential computing

/ Instructions

user: sbyna Fri Mar 18 08:05:34 2016

Problem (e.g., detect atmospheric rivers in 10,000 images)

- Processing 1 image at a time (1 second)
- Total time: 10,000 seconds

Very brief intro to parallel computing – 2 way parallel

Problem (e.g., find atmospheric rivers in 10,000 images)

/ Instructions

(assuming all PUs are working independently)

8

Very brief intro to parallel computing – 4 way parallel

Problem (e.g., find atmospheric rivers in 10,000 images)

Program Functions / Instructions

Repeat for 2,500 times ->

- Processing 1 image at a time (1 second)
- Total time: 10,000 seconds / 4 PUs → 2,500 seconds (assuming all PUs are working independently)

Very brief intro to parallel computing – 10,000 way parallel

Problem (e.g., find atmospheric rivers in 10,000 images)

Program Functions / Instructions

- Processing 1 image at a time (1 second)
- Total time: 10,000 seconds / 10,000 PUs → 1 second
 (assuming all PUs are working independently)

Different types of parallelism – Flynn's taxonomy

- Problem Data stream
- Work Instruction stream

- Single
- Multiple

SISD	SIMD
Single Instruction stream	Single Instruction stream
Single Data stream	Multiple Data stream
MISD	MIMD
Multiple Instruction stream	Multiple Instruction stream
Single Data stream	Multiple Data stream

Flynn's taxonomy

Flynn's taxonomy

Images from LLNL parallel computing tutorial - https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

Generalization of parallel computing

- Assume that we have **P** processing units
- Problem size is <u>N</u> (could be images or equations, or any work)
- Parallelization steps
 - Partition work across processes
 - Each process works on its problem
 - Write the output

Generalization of parallel computing – communication comes in

- Assume that we have **P** processing units
- Problem size is <u>N</u> (could be images or equations, or any work)
- Parallelization steps
 - Partition work across processes
 - Each process works on its problem
 - Communicate / synchronize with other processes
 - Write the output

A bit more on parallel computing

- Data parallel Same instructions are performed simultaneously on different / multiple data items – Single Instruction, Multiple Data (SIMD)
- Task parallel Different instructions on different data items Multiple Instructions, Multiple Data (MIMD)
- Single Program, Multiple Data (SPMD) synchronization among processes less frequently
- Message Passing Interface (MPI)
 - A standard for multiple processes in a parallel program to communicate and synchronize
 - MPI is for SPMD / MIMD parallelism
 - Will discuss MPI in one of the next week's classes

Further reading on parallel computing

- A tutorial from Lawrence Livermore National Laboratory
 - <u>https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial</u>
- The physics mill
 - <u>https://www.thephysicsmill.com/2014/07/27/parallel-computing-primer/</u>
- YouTube
- Message Passing Interface (MPI)
 - <u>https://hpc-tutorials.llnl.gov/mpi/</u>
 - <u>https://www.mcs.anl.gov/research/projects/mpi/</u>
 - https://www.mcs.anl.gov/research/projects/mpi/tutorial/gropp/talk.html
 - https://mpitutorial.com/tutorials/

A typical supercomputer architecture

M Writers/Readers, M Files

Summary of today's class

- Class projects
 - <u>Homework:</u>
 - Go through the projects and discuss if there are any questions / concerns
 - Select one project and let me know which one you would like to work on Jan 26th
 - Provide an initial plan of execution list tasks and timelines Jan 26th
- What is parallel computing?
- High-level concept of parallel I/O

After the class, slides are uploaded to: <u>https://osu.instructure.com/courses/141406/files</u>

Also available at: https://sbyna.github.io/teaching/5449-sdm.html

• Discussion of class projects you selected

• High-level I/O libraries

• HDF5

