
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 7: HDF5 Hyperslabs and Parallel I/O with MPI-IO

01/31/2023

https://sbyna.github.io/

Today’s class

• Class project – Revised execution plan presentation

• Homework – h5bench runs and PnetCDF basic tests

• HDF5 hyperslabs

• MPI-IO

1

Class projects

5. Performance comparison of sub-filing in HDF5 and PnetCDF
• Background: Sub-filing is an approach to split a very large file into smaller files. However, there are

pros / cons with the approach on how the data is organized.
• Question

• Which of the HDF5 and PnetCDF sub-filing approaches are best?
• What better strategies for sub-filing are there?

• Deliverable: A short paper describing
• Resources

• Tuning HDF5 subfiling performance on parallel file systems https://escholarship.org/content/qt6fs7s3jb/qt6fs7s3jb.pdf
• Using Subfiling to Improve Programming Flexibility and Performance of Parallel Shared-file I/O

https://ieeexplore.ieee.org/document/5362452
• Scalable Parallel I/O on a Blue Gene/Q Supercomputer Using Compression, Topology-Aware Data Aggregation, and

Subfiling https://ieeexplore.ieee.org/document/6787260
• HDF5 Subfiling presentation:

• https://www.hdfgroup.org/wp-content/uploads/2022/09/HDF5-Subfiling-VFD.pdf
• https://www.youtube.com/watch?v=psl2iZmP2SY

• PnetCDF subfiling
• http://cucis.eecs.northwestern.edu/projects/PnetCDF/subfiling.html

2

https://escholarship.org/content/qt6fs7s3jb/qt6fs7s3jb.pdf
https://ieeexplore.ieee.org/document/5362452
https://ieeexplore.ieee.org/document/6787260
https://www.hdfgroup.org/wp-content/uploads/2022/09/HDF5-Subfiling-VFD.pdf
https://www.youtube.com/watch?v=psl2iZmP2SY
http://cucis.eecs.northwestern.edu/projects/PnetCDF/subfiling.html

Homework

• h5bench runs
• write and read benchmarks

• PnetCDF basic runs

3

How to write a subset of an array?

Extreme Scale Computing HDF5 4

$ h5dump file.h5

HDF5 "file.h5" {
GROUP "/" {

DATASET "A" {
DATATYPE H5T_STD_I32BE
DATASPACE SIMPLE { (4, 6) / (4, 6) }
DATA {
(0,0): 0, 0, 0, 0, 0, 0,
(1,0): 1, 2, 3, 4, 5, 6,
(2,0): 0, 0, 0, 0, 0, 0,
(3,0): 0, 0, 0, 0, 0, 0
}

}
GROUP "B" {
}

}
}

Slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.) 4

Extreme Scale Computing HDF5 5

How to Describe a Subset in HDF5?

• Before writing and reading a subset of data one must describe it to the
HDF5 Library

• HDF5 APIs and documentation refer to a subset as a “selection” or
“hyperslab selection”

• If specified, HDF5 library will perform I/O on a selection only and not on
all elements of a dataset.

5Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 6

Types of Selections in HDF5

• Two types of selections
• Hyperslab selection

• Regular hyperslab
• Simple hyperslab
• Result of set operations on hyperslabs (union, difference, …)

• Point selection

• Hyperslab selection is especially important for doing parallel
I/O in HDF5

6Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 7

Regular Hyperslab

Collection of regularly spaced blocks of equal size

7Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 8

Simple Hyperslab

Contiguous subset or sub-array

8Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 9

Hyperslab Selection

Result of union operation on three simple hyperslabs

9Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

10

HDF5 Hyperslab Description

• Everything is “measured” in number of elements
• A hyperslab is defined with 4 properties
• Start - starting location of a hyperslab (1,1)
• Stride - number of elements that separate each block (3,2)
• Count - number of blocks (2,6)
• Block - block size (2,1)

Extreme Scale Computing HDF5
10Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 11

Simple Hyperslab Description
• Two ways to describe a simple hyperslab
• As several blocks

• Stride – (1,1)
• Count – (2,6)
• Block – (2,1)

• As one block
• Stride – (1,1)
• Count – (1,1)
• Block – (4,6)

No performance penalty for
one way or another

11Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Extreme Scale Computing HDF5 12

Writing a row
• Memory space selection is 1-dim array of size 6

• File space selection
start = {1,0}, stride = {1,1}, count = {1,6}, block = {1,1}

Number of elements selected in memory should be the same
as selected in the file

12Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.)

Writing a row

Extreme Scale Computing HDF5 13

hid_t mspace_id, fspace_id;
hsize_t dims[1] = {6};
hsize_t start[2], count[2];
…..
/* Create memory dataspace */
mspace_id = H5Screate_simple(1, dims, NULL);

/* Get file space identifier from the dataset */
fspace_id = H5Dget_space(dataset_id);

/* Select hyperslab in the dataset to write too */
start[0] = 1;
start[1] = 0;
count[0] = 1;
count[1] = 6;
status = H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET,

start, NULL, count, NULL);
H5Dwrite(dataset_id, H5T_NATIVE_INT, mspace_id, fspace_id,

H5P_DEFAULT, wdata);
13Modified slides from The HDF Group (Scot Breitenfeld, Quincey Koziol, et al.

Parallel I/O with MPI-IO

14

Reminder: Parallel I/O software stack

• Multiple layers of software libraries and hardware
• High-level libraries (HDF5, PnetCDF, etc.), middleware (MPI-IO), parallel

file system (Lustre, GPFS, etc.)

15

MPIO

Application
Processes

Aggregator
Processes

I/O
Servers

I/O
Controllers Disks

HDF5/
PnetCDF MPIO

POSIX-
IO

Parallel file system

MPI-IO

• A lower-level interface than HDF5, PnetCDF (high-level I/O libraries)

• A convenient interface for enabling parallel I/O
• Used by high-level I/O libraries as well as application developers

• What does MPI-IO offer?
• Provides mechanism for performing synchronization

• Syntax for data movement

• Optimizations – collective buffering, data sieving, etc.

• Allows definitions of non-contiguous data layout in files (MPI derived datatypes)

16

• Types of parallel I/O
• 1 writer/reader, 1 file
• N writers/readers, N files (File-per-

process)
• N writers/readers, 1 file
• M writers/readers, 1 file

• Aggregators
• Two-phase I/O

• M aggregators, M files (file-per-
aggregator)
• Variations of this mode

17

Parallel I/O – Application view

P0 P1 Pn-1 Pn…

file.0

1 Writer/Reader, 1 File

P0 P1 Pn-1 Pn…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1 Pn-1 Pn…

n Writers/Readers, 1 File
File.1

P0 P1 Pn-1 Pn…

file.0

M Writers/Readers, M Files

file.m

P0 P1 Pn-1 Pn…

M Writers/Readers, 1 File
File.1

Parallel I/O in MPI-IO

• Program level
• Multiple processes concurrently perform I/O (read / write) operations to a common

file

• System level
• A parallel file system and storage hardware that support concurrent accesses to a
common file

18

Independent I/O in MPI-IO

• Common operations (in POSIX-IO)
• Open the file
• Read / Write data from / to the file
• Close the file

• In MPI-IO
• Open the file: MPI_File_open
• Write to the file: MPI_File_write
• Close the file: MPI_File_close

19Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

MPI-IO: Independent I/O example

20Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

#include <stdio.h>
#include "mpi.h”

int main(int argc, char *argv[])
{

MPI_File fh;
int buf [1000], rank;
MPI_Init (0,0);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_File_open (MPI_COMM_WORLD, ”mpi-ind-file.out",

MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

if (rank == 0)
MPI_File_write (fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close (&fh);
MPI_Finalize();
return 0;

}

MPI-IO: Independent I/O example

21Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

#include <stdio.h>
#include "mpi.h”

int main(int argc, char *argv[])
{

MPI_File fh;
int buf [1000], rank;
MPI_Init (0,0);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_File_open (MPI_COMM_WORLD, ”mpi-ind-file.out",

MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

if (rank == 0)
MPI_File_write (fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

MPI_File_close (&fh);
MPI_Finalize();
return 0;

}

Collective operation

Collective operation

Independent
operation

MPI_File_write ()
MPI_File_write_at ()

MPI_MODE_WRONLY /
MPI_MODE_RDONLY / MPI_MODE_RDWR /
MPI_MODE_CREATE have to be passed to
MPI_File_open ()

MPI-IO: Independent I/O example

22Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

#include “mpi.h”
MPI_Status status;
MPI_File fh;
MPI_Offset offset;

MPI_File_open (MPI_COMM_WORLD, “file.bin”,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE);
offset = rank * nints * INTSIZE;
MPI_File_read_at (fh, offset, buf, nints, MPI_INT, &status);
MPI_Get_count (&status, MPI_INT, &count);
printf (“process % d read %d ints\n”, rank, count);
MPI_File_close (&fh);

MPI_File_write ()
MPI_File_write_at ()

MPI_MODE_WRONLY /
MPI_MODE_RDONLY / MPI_MODE_RDWR /
MPI_MODE_CREATE must be passed to
MPI_File_open ()

MPI_File_seek
MPI_File_read
MPI_File_write

MPI_File_read_at
MPI_File_write_at

Combines seek + I/O
for thread safety

File views for non-contiguous accesses

• Each process describes the part of the file, i.e., file view, for which it is
responsible

• Only the part of the file described by the file view is visible to the process;
reads and writes access these locations

• Specified by a triplet (displacement, etype, and filetype) passed to
MPI_File_set_view

• displacement = number of bytes to be skipped from the start of the file
• etype = basic unit of data access (can be any basic or derived datatype)
• filetype = specifies which portion of the file is visible to the process

• HDF5 à Similar to Hyperslabs, hyperslabs provide more flexibility

23Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

Simple non-contiguous file view

24Adapted from Prof. Bill Gropp’s “Introduction to MPI-IO” talk

Simple non-contiguous file view – from multiple processes

25https://cvw.cac.cornell.edu/ParallelIO/fileviews Example code: https://cvw.cac.cornell.edu/ParallelIO/fileviewex

Collective I/O in MPI

• All processes must call the collective I/O function
• Aggregating large blocks so that the reads / writes

to the I/O system would be large

• MPI_File_write_at_all ()
• _all à all processes in the communicator are

participating
• _at à provides thread-safety and avoids a separate seek

• MPI_File_seek
• MPI_File_read_all
• MPI_File_write_all
• MPI_File_read_at_all
• MPI_File_write_at_all

26

When to use independent and collective?

• Independent
• A small number of large I/O requests from processes
• Load imbalance among processes that need to wait for too long in a collective call

• Collective
• A large number of small I/O requests from processes à aggregation is beneficial
• Load on all processes is approximately the same

27

Summary of today’s class

• Class project

• HDF5 Hyperslabs

• MPI-IO basics

• Next Class –
• A few more details on MPI-IO
• PnetCDF and ADIOS

28

Collective buffering

29

