CSE 5449: Intermediate Studies in Scientific Data Management

Lecture 10: Parallel 1/O Performance

Dr. Suren Byna

The Ohio State University

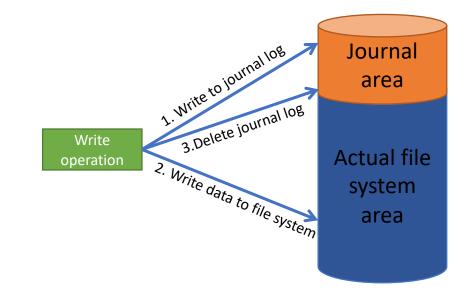
E-mail: byna.1@osu.edu

https://sbyna.github.io

02/09/2023

• Any questions?

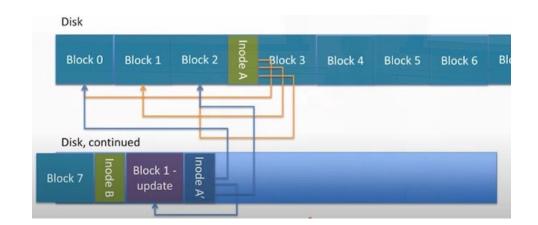
Class presentation topic

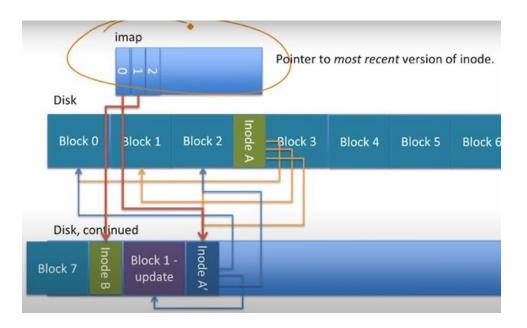

- Today's class
 - Parallel I/O performance

File system – Fault tolerance requirements

- In computing systems, crashes happen
 - Power outage, software bugs, hardware bugs, etc.
- Maintaining consistency in case of a failure is crucial
- Fault tolerance
 - Maintain functionality and data structures consistent
 - Example: If a file system is in the middle of a write operation, it must record it and recover it when the fault is resolved
- Two approaches
 - Journaling
 - Log-structured

Journaling File System


- A journal to keep track of uncommitted file system operations
- A separate data structure is used for keeping track of records Journal



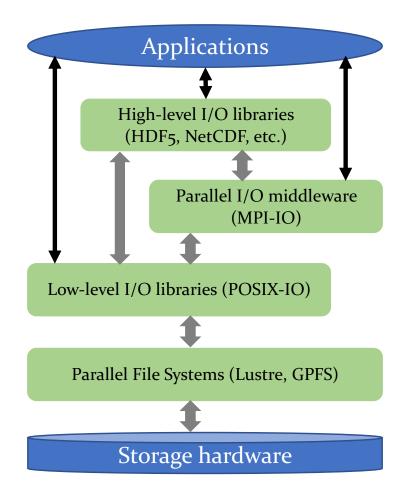
Log-structured File System

- Instead of making changes to the journal and file system separately, logs are embedded into the file system
- Blocks of data are never modified
 - An update operation places a new block at the end of the file
 - Writes always go to the end of the file

More details: https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf

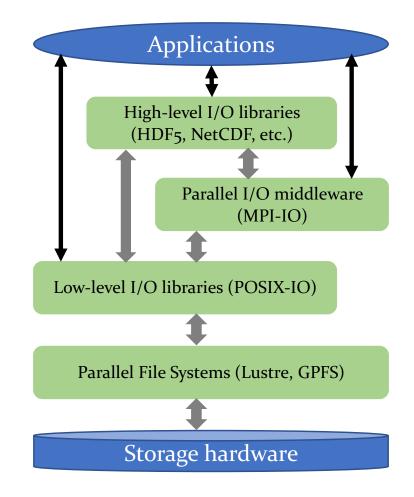
Image source: https://www.quora.com/What-is-the-difference-between-a-journaling-vs-a-logstructured-file-system

Parallel I/O performance


Parallel I/O performance – Factors that impact from Application level

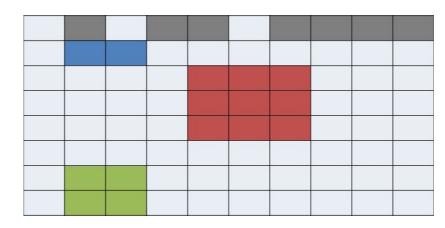
- Number of I/O requests
- Size of I/O requests
- Number of files
- Number of metadata calls
 - File open and close requests
- Number of seek operations
- Contiguous / non-contiguous requests
 - Number of seeks
- Alignment of I/O request with
 - File block
 - Sub-files

•


. . .

• Shared file or multiple files

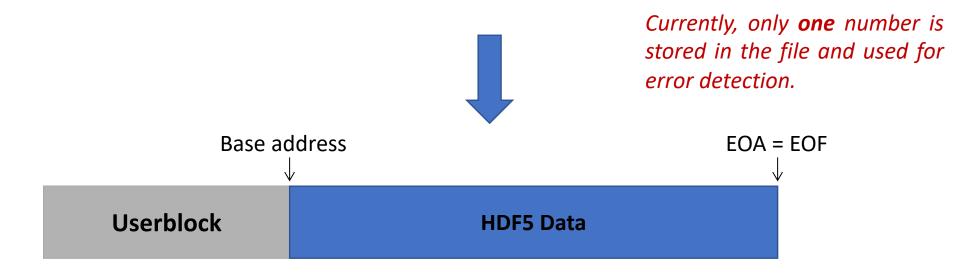
Parallel I/O performance – Factors that impact – HL I/O library


- High-level I/O library
 - Metadata operations for self-describing property
 - Location of metadata
 - How many processes are participating in metadata or data operations
 - Alignment in file offsets
 - Hyperslab selections
 - contiguous / non-contiguous?
 - complex hyperslabs construction cost
 - Chunking
 - Chunk size
 - Number of chunks
 - Sub-files
 - How many? How's the data aggregated?
 - Compression used or not?
 - What's the compression / decompression cost?
 - Where is compression / decompression executed?
 - File need to be exact size or can it have some gaps?
 - Cache metadata or not?

Hyperslabs can be complex

- HDF5 doesn't have restrictions on data patterns and data balance
- Internally, the HDF5 library creates an MPI datatype for each lower dimension in the selection and then combines those types into one giant structured MPI datatype

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

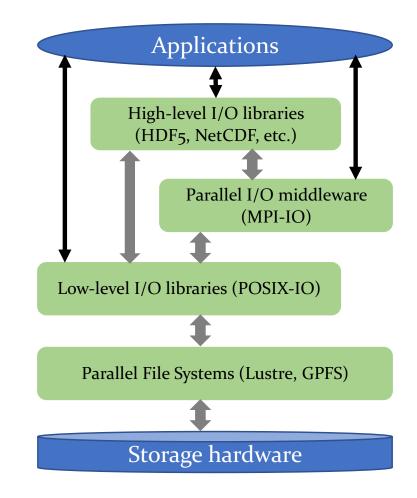

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

		_					
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64
	9 17 25 33 41 49	9 10 17 18 25 26 33 34 41 42 49 50	9 10 11 17 18 19 25 26 27 33 34 35 41 42 43 49 50 51	9 10 11 12 17 18 19 20 25 26 27 28 33 34 35 36 41 42 43 44 49 50 51 52	9 10 11 12 13 17 18 19 200 21 25 26 27 28 29 33 34 35 36 37 41 42 43 44 45 49 50 51 52 53	9 10 11 12 13 14 17 18 19 20 21 22 25 26 27 28 29 30 33 34 35 36 37 38 41 42 43 44 45 46 49 50 51 52 53 54	9 10 11 12 13 14 15 17 18 19 20 21 22 23 25 26 27 28 29 30 31 33 34 35 36 37 38 39 41 42 43 44 45 46 47 49 50 51 52 53 54 55

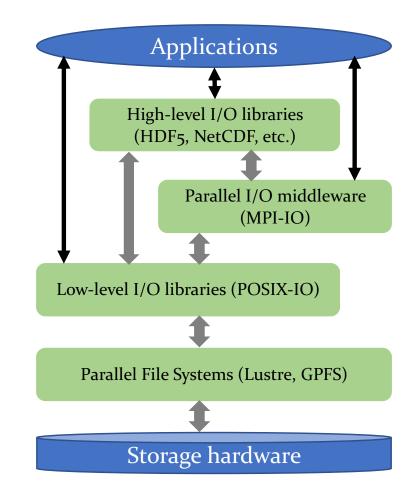
File Truncation Needed or not?

A call to H5Fflush or H5Fclose triggers a call to ftruncate (serial) or MPI_File_set_size (parallel), which can be fairly expensive.

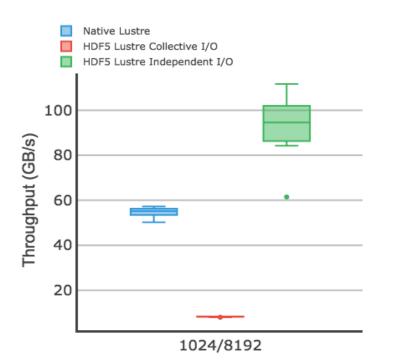
File Truncation Needed or not?


A call to H5Fflush or H5Fclose triggers both values (EOA, EOF) to be saved in the file and **no** truncation takes place, IF the file was created with the "avoid truncation" property set.

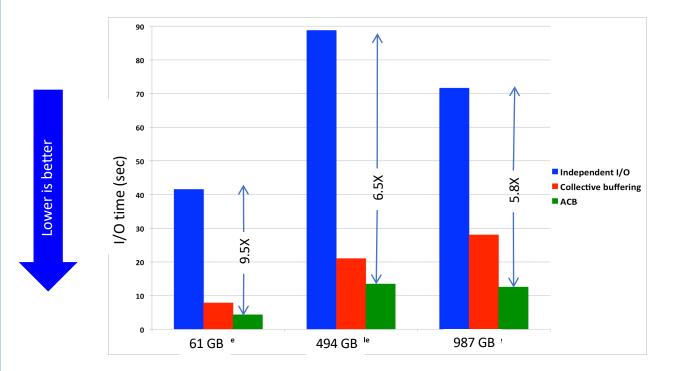
Caveat: Incompatible with older versions of the library. Requires HDF5 library version 1.12 or later.


Parallel I/O performance – Factors that impact – MPI-IO layer

- Contiguous / non-contiguous accesses
- Number of I/O requests
- Size of I/O requests
- POSIX consistency semantics
- Synchronous / Asynchronous I/O calls
- Collective or independent
- If collective:
 - Number of aggregators
 - Aggregator placement
 - Aggregation buffer size
 - Aggregator to file system mapping network connections and block sizes


Parallel I/O performance – Factors that impact – Parallel file system

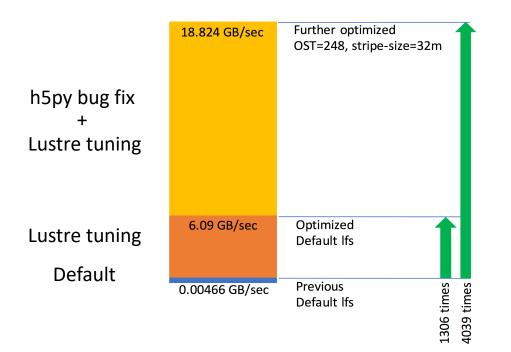
- Number of storage servers
- Number of metadata servers
- Number of storage targets (stripe count)
- Block size on storage server
- Page size on storage target
- Amount of contiguous data stored on a storage target (stripe size)
- Traffic on storage targets
- Fullness of storage targets
- Fragmentation on storage targets


Parallel I/O performance optimization – Use cases

AMReX I/O (collective vs. independent)

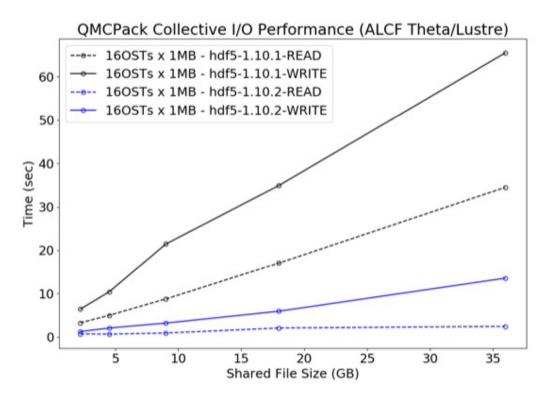
Number of Nodes / Number of Processes

Chombo I/O (collective vs. independent)



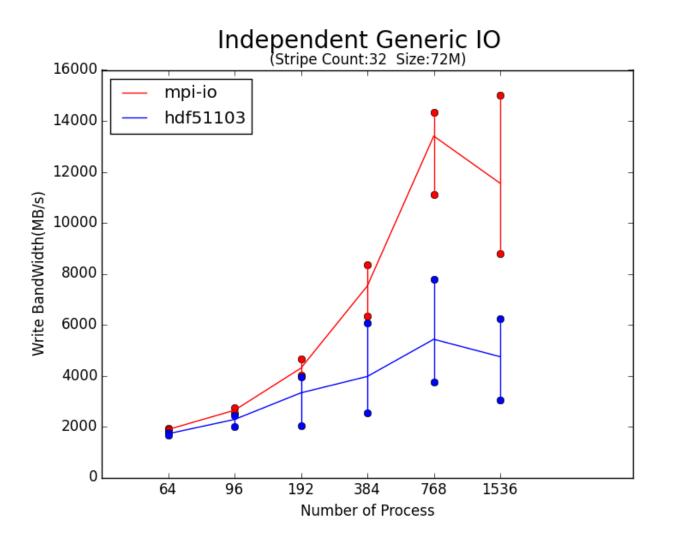
ACB: Aggregated Collective Buffering

- Three-phase I/O
 - Application + MPI-IO two-phase I/O

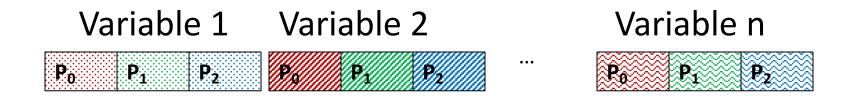

Native: File per node

WarpX (Tuning Lustre)

1024 cores on Edison, generating a 1TB output file

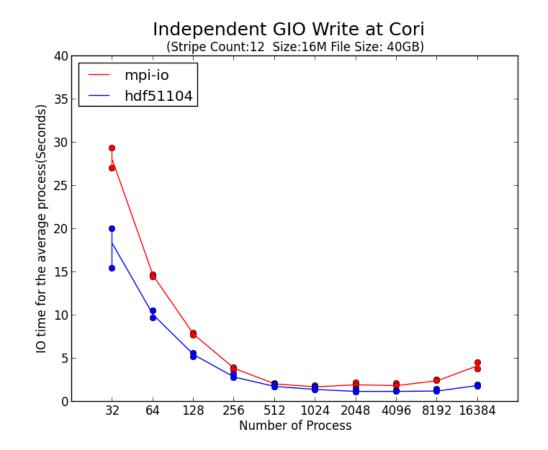

QMCPACK (HDF5 version dependences, best to use newest version)

HACC – Data layout


Benchmark:

- 9 1-D variables with the same number of elements (~1e9).
- Total file size is about 40GB.
- Can switch between writing with MPI-IO or HDF5.
- Used independent IO for write.

Pattern 1 – General HDF5 pattern



Pattern 2- HACC MPI-IO pattern

HDF5 Pattern 2 Implementation

• Use HDF5 compound datatype, then one big HDF5 write for each process

CGNS Performance Problems

- Opening an existing file
 - CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata
 - Reads occur independently on ALL ranks competing for the same metadata
 → "Read Storm"

- Closing a CGNS file
 - Triggers HDF5 flush of a large amount of small metadata entries
 - Implemented as iterative, independent writes, an unsuitable workload for parallel file systems

Metadata Read Storm Problem (I)

• All metadata "write" operations are required to be collective:

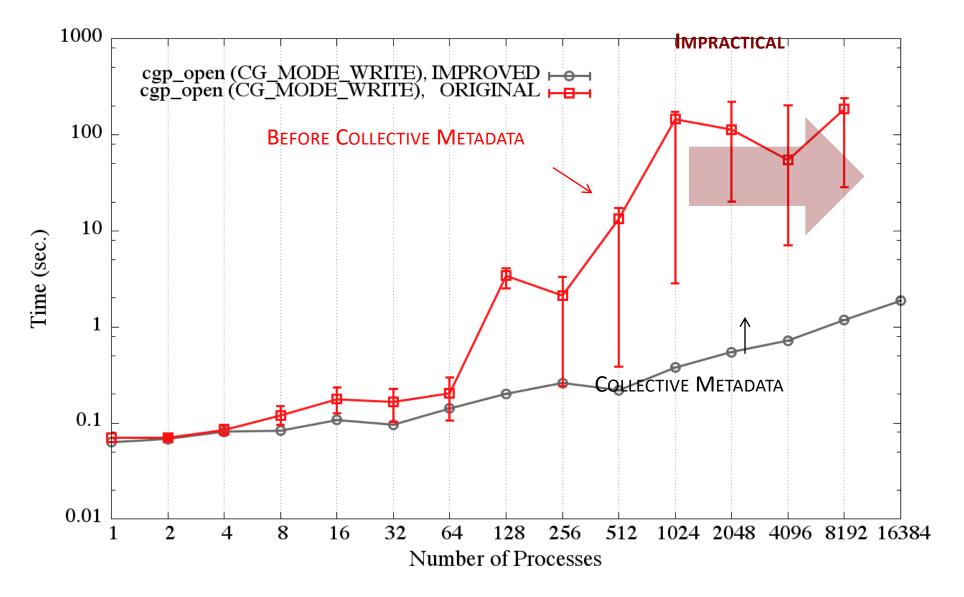
χ.	
<pre>if(0 == rank) H5Dcreate("dataset1"); else if(1 == rank) H5Dcreate("dataset2");</pre>	<pre>/* All ranks have to ca H5Dcreate("dataset1"); H5Dcreate("dataset2");</pre>

 Metadata read operations are not required to be collective \checkmark

```
if(0 == rank)
    H5Dopen ("dataset1");
else if(1 == rank)
    H5Dopen ("dataset2");
```

```
/* All ranks have to call */
H5Dopen ("dataset1");
H5Dopen ("dataset2");
```

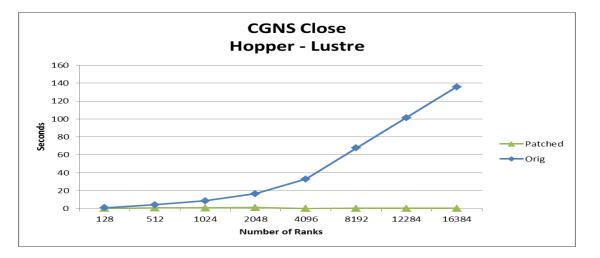
have to call */

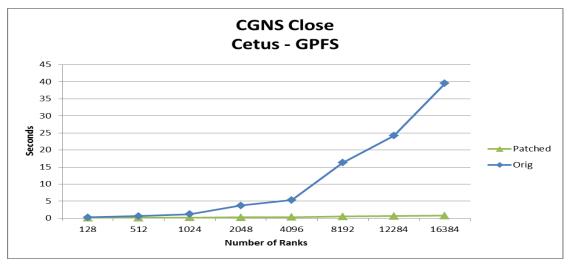

Metadata Read Storm Problem (II)

- Metadata read operations are treated by the library as independent read operations.
- Consider a very large MPI job size where all processes want to open a dataset that already exists in the file.
- All processes
 - Call H5Dopen("/G1/G2/D1");
 - Read the same metadata to get to the dataset and the metadata of the dataset itself
 - IF metadata not in cache, THEN read it from disk.
 - Might issue read requests to the file system for the same small metadata.
- → READ STORM

Avoiding a Read Storm

- Hint that metadata access is done collectively
 - H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops
- A property on an access property list
- If set on the file access property list, then all metadata read operations will be required to be collective
- Can be set on individual object property list
- If set, MPI rank 0 will issue the read for a metadata entry to the file system and broadcast to all other ranks


Opening CGNS File ...



Write Metadata Collectively!

- **Symptoms:** Many users reported that H5Fclose() is very slow and doesn't scale well on parallel file systems.
- Diagnosis: HDF5 metadata cache issues very small accesses (one write per entry). We know that parallel file systems don't do well with small I/O accesses.
- Solution: Gather up all the entries of an epoch, create an MPI derived datatype, and issue a single collective MPI write.

Closing a CGNS File ...

Summary of today's class

• Parallel I/O performance factors and some application tuning examples

• Next Class – Tracing parallel I/O performance, visualizing