
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 10: Parallel I/O Performance

02/09/2023

https://sbyna.github.io/

Today’s class

• Any questions?

• Class presentation topic

• Today’s class –
• Parallel I/O performance

1

File system – Fault tolerance requirements

• In computing systems, crashes happen
• Power outage, software bugs, hardware bugs, etc.

• Maintaining consistency in case of a failure is crucial

• Fault tolerance
• Maintain functionality and data structures consistent
• Example: If a file system is in the middle of a write operation, it must record it and recover

it when the fault is resolved

• Two approaches
• Journaling
• Log-structured

2

Journaling File System

• A journal to keep track of
uncommitted file system operations
• A separate data structure is used for

keeping track of records – Journal

3

Actual file
system

area

Journal
area

Write
operation

1. W
rite

 to journal lo
g

2. Write data to file system

3.Delete journal log

Log-structured File System

• Instead of making changes to the
journal and file system separately,
logs are embedded into the file
system
• Blocks of data are never modified

• An update operation places a new block
at the end of the file

• Writes always go to the end of the file

4More details: https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf Image source: https://www.quora.com/What-is-the-difference-between-a-journaling-vs-a-log-
structured-file-system

Parallel I/O performance

5

Parallel I/O performance – Factors that impact from Application level

• Number of I/O requests
• Size of I/O requests
• Number of files
• Number of metadata calls

• File open and close requests
• Number of seek operations
• Contiguous / non-contiguous requests

• Number of seeks
• Alignment of I/O request with

• File block
• Sub-files

• Shared file or multiple files
• …

6

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Parallel I/O performance – Factors that impact – HL I/O library

• High-level I/O library
• Metadata operations for self-describing property
• Location of metadata
• How many processes are participating in metadata or data

operations
• Alignment in file offsets
• Hyperslab selections

• contiguous / non-contiguous?
• complex hyperslabs construction cost

• Chunking
• Chunk size
• Number of chunks

• Sub-files
• How many? How’s the data aggregated?

• Compression used or not?
• What’s the compression / decompression cost?
• Where is compression / decompression executed?

• File need to be exact size or can it have some gaps?
• Cache metadata or not?

7

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Hyperslabs can be complex

• HDF5 doesn’t have
restrictions on data
patterns and data balance

• Internally, the HDF5 library
creates an MPI datatype
for each lower dimension
in the selection and then
combines those types into
one giant structured MPI
datatype

8

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

8
16
24
32
40
48
56
64

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

8
16
24
32
40
48
56
64

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

8
16
24
32
40
48
56
64

File Truncation Needed or not?

A call to H5Fflush or H5Fclose triggers a call to ftruncate (serial) or
MPI_File_set_size (parallel), which can be fairly expensive.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA = EOF

Currently, only one number is
stored in the file and used for
error detection.

File Truncation Needed or not?

A call to H5Fflush or H5Fclose triggers both values (EOA, EOF) to be
saved in the file and no truncation takes place, IF the file was created
with the “avoid truncation” property set.

Userblock HDF5 Data

Base address EOA EOF

Unused

Userblock HDF5 Data

Base address EOA EOF

Unused

Caveat: Incompatible with older versions of the library. Requires HDF5
library version 1.12 or later.

Continue allocation
from here:

Parallel I/O performance – Factors that impact – MPI-IO layer

• Contiguous / non-contiguous accesses
• Number of I/O requests
• Size of I/O requests
• POSIX consistency semantics
• Synchronous / Asynchronous I/O calls
• Collective or independent
• If collective:

• Number of aggregators
• Aggregator placement
• Aggregation buffer size
• Aggregator to file system mapping – network

connections and block sizes

11

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Parallel I/O performance – Factors that impact – Parallel file system

• Number of storage servers
• Number of metadata servers
• Number of storage targets (stripe count)
• Block size on storage server
• Page size on storage target
• Amount of contiguous data stored on a

storage target (stripe size)
• Traffic on storage targets
• Fullness of storage targets
• Fragmentation on storage targets

12

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

Parallel I/O performance optimization – Use cases

13

AMReX I/O
(collective vs. independent)

Lo
w

er
 is

 b
et

te
r

9.
5X

6.
5X

5.
8X

I/
O

 ti
m

e
(s

ec
)

61 GB 494 GB 987 GB

Chombo I/O
(collective vs. independent)

Native: File per node
ACB: Aggregated Collective Buffering
- Three-phase I/O

- Application + MPI-IO two-phase I/O

15

QMCPACK
(HDF5 version dependences,
best to use newest version)

WarpX (Tuning Lustre)

Default

Lustre tuning

h5py bug fix
+

Lustre tuning

HACC – Data layout

16

Benchmark:
• 9 1-D variables with the same

number of elements (~1e9).
• Total file size is about 40GB.
• Can switch between writing with

MPI-IO or HDF5.
• Used independent IO for write.

HACC Write Patterns

Variable 1

Pattern 1 – General HDF5 pattern

Pattern 2- HACC MPI-IO pattern

P0 P1 P2 P0 P1 P2

P0 P0

P0 P1 P2

Variable 2 Variable n
…

P0 P1 P1 P1 P2 P2 P2
… … …

HDF5 Pattern 2 Implementation
• Use HDF5 compound datatype, then one big HDF5 write for each process

CGNS Performance Problems

• Opening an existing file
• CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata
• Reads occur independently on ALL ranks competing for the same metadata

è”Read Storm”

• Closing a CGNS file
• Triggers HDF5 flush of a large amount of small metadata entries
• Implemented as iterative, independent writes, an unsuitable workload for parallel file

systems

Metadata Read Storm Problem (I)

• All metadata “write” operations are required to be collective:

if(0 == rank)
H5Dcreate(“dataset1”);

else if(1 == rank)
H5Dcreate(“dataset2”);

• Metadata read operations are not required to
be collective

O

/* All ranks have to call */
H5Dcreate(“dataset1”);
H5Dcreate(“dataset2”);

P

if(0 == rank)
H5Dopen(“dataset1”);

else if(1 == rank)
H5Dopen(“dataset2”);

/* All ranks have to call */
H5Dopen(“dataset1”);
H5Dopen(“dataset2”);

PP

Metadata Read Storm Problem (II)

• Metadata read operations are treated by the library as independent
read operations.
• Consider a very large MPI job size where all processes want to open a

dataset that already exists in the file.
• All processes

• Call H5Dopen(“/G1/G2/D1”);
• Read the same metadata to get to the dataset and the metadata of the dataset

itself
• IF metadata not in cache, THEN read it from disk.

• Might issue read requests to the file system for the same small metadata.

• è READ STORM

Avoiding a Read Storm

• Hint that metadata access is done collectively
• H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

• A property on an access property list
• If set on the file access property list, then all metadata read operations will be

required to be collective
• Can be set on individual object property list
• If set, MPI rank 0 will issue the read for a metadata entry to the file system

and broadcast to all other ranks

Opening CGNS File …

BEFORE COLLECTIVE METADATA

COLLECTIVE METADATA

IMPRACTICAL

Write Metadata Collectively!

• Symptoms: Many users reported that H5Fclose() is very slow and
doesn’t scale well on parallel file systems.

• Diagnosis: HDF5 metadata cache issues very small accesses (one write
per entry). We know that parallel file systems don’t do well with small I/O
accesses.

• Solution: Gather up all the entries of an epoch, create an MPI derived
datatype, and issue a single collective MPI write.

Closing a CGNS File …

Summary of today’s class

• Parallel I/O performance factors and some application tuning examples

• Next Class – Tracing parallel I/O performance, visualizing

26

