
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 13: Mining I/O logs for root causes of performance bottlenecks

02/21/2023

https://sbyna.github.io/

Today’s class

• Any questions?

• Progress of the project

• Today’s class –
• Performance analysis – mining I/O logs for root causes of performance bottlenecks

1

I/O instrumentation data are collected at different I/O stages

CN CN

CN CN

BB

Compute Nodes

CN CN

CN CN

Job-Level I/O
Instrumentation

System-Level I/O
Instrumentation

BB
ION

ION

Parallel File System

Burst Buffer IO Node

2

Job ID: 001
Application name: GTC

Bytes written: 1GB
Bytes read: 2GB

Process count: 1024
File1 info, File2 info, …

…

Custom Binary
Format Darshan utility

Database

Text files

JobID:001, Node
count:32, core count:

1024, …, etc.

JobID: 002, Node count:
64, core count: 2048,

…,etc.

Text file1-5s 6-10s

OST1 1GB 2GB

OST2 0.5GB 10GB

Slurm utility

Diverse storage formats of different instrumentation
data

HDF5 File 3

What can we learn from multi-level I/O
instrumentation data

● Analytics based on Darshan
○ Application-level I/O statistics: e.g., finding the top I/O consumers,

low-bandwidth jobs, etc.
○ Application-level I/O performance analysis: e.g., finding the root

causes for applications’ poor I/O performance.
● Analytics based on Slurm

○ Application-level I/O statistics: Finding the number of nodes used
by a job.

● Analytics based on LMT logs
○ System-level I/O statistics: Calculating the amount of data written

to/read on the parallel file system during a given period, etc.
4 4

Challenges of analyzing existing I/O logs

● Ad hoc interfaces and data formats of different logs require
nontrivial manual effort.

● Lack of a read-friendly data format for fast parallel analytics.
○ E.g., Darshan produces one log file for each job.
○ Analysis that requires all jobs’ information takes a long time.

● Users have to manually look at each job’s log file to identify
the root causes of its poor I/O performance.

5 5

Existing approaches in I/O analytics

6

Representative
works

Unified interfaces
and data format?

Use parallel
analytics?

Support root cause
analysis for poor I/O
performance based on
applications’ I/O
patterns?

Application-level HPDC’15, CUG’16,
ICCCN’13, etc.

No No No

System-level ICDCS’17,
PDSW’15, SC’13,
etc.

No No No

Multi-Level GUIDE (SC’16) Yes Yes No

Multi-Level Pytokio (CUG’18) Yes No No

Multi-Level IOMiner Yes Yes Yes 6

Overview of IOMiner

● Provide a set of functions for I/O statistics and performance analysis on
multi-level instrumentation data
○ Statistics: e.g. finding the top I/O-intensive applications, total I/O traffic on the parallel file system

during a given period.
○ Performance analysis: e.g. identify the potential root causes for applications’ poor I/O

performance.

● Leverage Spark for parallel I/O analytics
○ Loading and analyzing I/O logs with a single process is not scalable.
○ Parallel databases are not readily available on HPC.

● Use SparkRDD to chain together a set of analytics functions and compose a
high-level analytics

Log Function1
e.g., project

Function2
e.g. filter Result

7

High-level interfaces

8

● Storage construction
○ miner.init_stores(start_date, end_date)
○ Format Darshan, LMT, and Slurm logs during a period into a unified table format
○ darshan_tuples = miner.load(“darshan_job”)
○ Load darshan table into memory

● Common query functions layered on top of Spark
○ filter, project, group, join, sort, percentile, bin, etc.
○ E.g. darshan_tuples.project(“job_id”, ”bytes_written”).filter(“bytes_written < 1GB”)
○ Find the jobs who have written less than 1GB data.

● Identify root factors for jobs with poor I/O performance
○ E.g. perf_factors = low_bw_tuples.extract_perf_factors()
○ Return a list of performance contributing factor values for low-bandwidth jobs, such as small I/O percent,

non-consecutive I/O percent, etc.

8

Unified storage format

9

[0-5)s [5-10)s

OST1 6GB 8GB

OST2 10GB 9GB

[0-5)s [5-10)s

OST1 15GB 7GB

OST2 8GB 5GB

node

count

process

count

job ID

4 8 1

16 16 2

app	

name

bytes

written

bytes	

read

job	

ID

app1 1GB 2GB 1

app2 2GB 4GB 2

job ID file

name

OST

list

IO	

start

IO	

end

1 a.ckpt (0,1,…) 5s 10s

2 b1.h5 (1,1,…) 0s 5s

2 b2.h5 (1,1…) 0s 5s

job	ID
OST	and	

timing

…

…

…

…

…

…

…

…

…

…

Darshan job table

Darshan file table

Slurm table

LMT read table

LMT write table

● Different instrumentation data have distinct formats
● Format Darshan, Slurm, and LMT logs into tables.
● Associate different tables with the colored fields.

9

Data layout for parallel data analytics based on Spark

● However, using a few large tables does not yield good parallelism.
● Split Darshan, Slurm tables into subtables, and Spark driver

dispatches these tables to different executors.

Driver

Executor1

subtable
(1-9)

subtable
(10-18)

Slurm subtable Darshan job subtable Darshan file subtable

Physical OST1

Load Load

Dispatch

Disp
atch

Physical OST2Job 1-30 in
subtable (1-9)

Job 31-60 in subtable
(10-18)

… …

subtable (1-9) subtable (10-18)

Executor2

10

Parallel Coordinates Plot for Application-Level IO Analysis

UserNo

JobNo

Datasize

IO BW

0 1

0 1 2

0-1GB 1-10GB 10-100GB

0-1GB/s 1-10GB/s 10-100GB/s

Small IO (%)
0 50% 100%

3

● Parallel coordinates plot clusters jobs based on their IO metric values, such as data
size, small IO (%) and IO BW.

● Each line represents a job, each color represents a user

11

Root cause analysis: finding the bottleneck files

● Each job can read/write a large number of files, complicating the
process of root cause analysis.

● IOMiner automatically filters the bottleneck files that determine the I/O
timing on the critical path based on sweep-line algorithm.

Time (s)0 10 164 6 8 12 18

File1

File3

File4

File2

12

Calculating the common contributing factor values of
bottleneck files

● For each bottleneck file, calculate the following metrics.
● Small I/O percent: percent of small I/O requests among all I/O requests

○ High number of small I/O operations often cause long I/O time.

● Non-consecutive I/O percent: I/O requests not requesting consecutive bytes
streams
○ Non-consecutive I/O operations can increase I/O randomness

● Contention level: the ratio of the process count accessing a file to the number
of OSTs hosting that file.
○ A high value is a possible indicator that a large number of processes are writing/reading

the same OST.

● Whether or not collective I/O is used.
○ Collective I/O reduces the number of small and random I/O.

13

Experiment Setup

● Hardware Configuration
○ Cori supercomputer from LBNL with 2400 Intel “Haswell” nodes and 9700 Intel Xeon Phi

“Knights Landing” nodes.
○ A center-wide Lustre file system.

● Coverage
○ 0.45 million Darshan logs from 3.15 million successfully completed jobs during Jan 2018.
○ Analyzed Darshan logs cover 9.4% of read/write traffic on LMT, and 20.2% of CPU hours

from Slurm

● Analysis performed
○ System-wide statistics such as sequential I/O ratio, dominating I/O patterns.
○ Analysis of root cause for applications’ low I/O performance.

14

Performance of IOMiner

● Measure the time of scanning all Darshan subtables to find
out the jobs with customized stripe setting.

● IOMiner achieves up to 18x speedup.
● Only 0.08% jobs use customized stripe setting.

15

How many jobs adopt sequential I/O pattern?

● More than 50% jobs’ sequential I/O ratio is above 80%.
● Only 10% jobs’ sequential I/O ratio is below 50%.

10% jobs’
sequential I/O
percent is below
50%.

Less than 50%
jobs’ sequential
I/O percent is
below 80%

16

How many jobs are read-intensive?
● Read percent is measured by (bytes_read/total I/O size) (53%)
● 7% and 23% jobs are read-only and write-only, 53% jobs’ read percent are

above 90%.
● Improving read performance carries at least same consequence as write.

7% write-
only

23% read-
only

53% jobs with read
percent > 90%

17

Are N-N and N-1 the most common I/O patterns?
● N: the number of processes. M: the number of files.
● N-1 and N-N jobs are only a small fraction of all the jobs, most jobs exhibit N-M

patterns.

18

Is MPI-IO widely adopted?
● ONE: jobs using 1 process. SMALL:[2,1024]. MEDIUM:[1025,8192], LARGE:>8192
● POSIX I/O is still dominating all the cases. Collective MPI-IO is mostly enabled in MPI-

IO.

22 19

How factors correlate with each other and
impact I/O bandwidth?

20

● The max correlation of job-level factors with bandwidth is data size (0.38) and process count
(0.25) in red box

● Correlation between system-level factors and bandwidth is negligible (between -0.05 and 0.05)
in green box.

● No factor alone has dominating platform-wide IO impact due to the diversity of jobs’ IO profile,
which mandates application-level analysis.

20

Analyzing the root causes for applications’
poor I/O performance

● Each line represents a job, and has values on multiple metrics. The bottom metric is
bandwidth. Jobs within the same applications have the same colors.

● There are no single contributing factor that can explain most jobs’ poor I/O bandwidth.

Jobs with > 1000 processes, write > 10GB, but read bandwidth below 1GB/s.
21

Top CPU core-hour consumer applications

● Group applications by executable name and calculate the aggregate core hours
of each application.

● The top 15 applications consume 74% of total CPU core hours of 88,000 jobs.

22

Application-Level Analysis of Cosmology1 IO

● Cosmology1’s IO is well-formed: all jobs have high sequential IO (>75%), low small IO
ratio (< 5%). Low metadata and storage server CPU utilization (<4% and <33%), etc.

● However, IO bandwidth varies between [1,10) GB/s and [10,100)GB/s, which needs a
job-level analysis.

23

Job-Level Analysis of Cosmology1 IO

(a) Job with [1, 10) GB/s (b) Job with [10, 100) GB/s

● Jobs with [1,10) GB/s is due to its frequent I/O phases, I/O time of each I/O
phase is bottlenecked by the slowest rank (a rank is a process).

● Refer to paper for other [1,10) GB/s and [10,100) GB/s cases.

24

Application-Level Analysis of Combustion1 IO

● There are 59 jobs belonging to 3 users.
● User 0’s jobs (red) are all bottlenecked by too many small I/O (100%).
● User 1’s jobs (green) fall in both [0, 1) GB/s and [1,10) GB/s.

25

Job-Level Analysis of Combustion1 IO

● Zoom-in one representative User 1’s job in each bandwidth category.
● [0, 1)GB/s job is bottlenecked by rank 0 undertaking excessively higher IO

workload.
● [1, 10) GB/s jobs is bottlenecked by all ranks reading a shared file, but Darshan

log indicates only one rank performs actual read.

(a) Job with [0, 1) GB/s (b) Job with [1, 10) GB/s
26

Application-Level Analysis of Cosmology2 IO

● 3 jobs were run by the same user.
● All three jobs’ I/O bandwidth is within [1, 10)GB/s

27

Job-Level Analysis of Cosmology2 IO
● All the processes concurrently access a shared file
● However, this file is striped on only one OST (default stripe count 1)

28

Job-Level Analysis of Climate1 IO
● MaxRankIO: the percent of data accessed by the rank with max IO.
● All the jobs’ bandwidth are bottlenecked by one rank performing most of IO

workload.

29

Application-Level Analysis of Quantum1 IO

● One user’s job’s I/O bandwidth spans across 4 ranges, and the I/O
bottlenecks of each range is not directly perceivable from the
parallel coordinate plot.

30

Job-Level Analysis of Quantum1 IO

(0, 1]GB/s job (1, 10]GB/s job

(10, 100]GB/s job (100, 1000]GB/s job

One rank IO suffers from transient metadata
load change

Rank 0 writes a large number of
configuration files

Rank 0 takes more time than others
due to its larger workload, but bandwidth is still

good as other ranks also write a lot of data

There are four I/O phases, each
I/O phase follows read after

write pattern
31

Summary of today’s class

• Mining I/O logs for root causes of performance bottlenecks

• References:
• Teng Wang, Suren Byna, Glenn Lockwood, Nicholas Wright, Phil Carns, and Shane

Snyder, "IOMiner: Large-scale Analytics Framework for Gaining Knowledge from I/O
Logs", IEEE Cluster 2018
https://sdm.lbl.gov/~sbyna/research/papers/201809_IOMiner_Cluster_2018_Teng.pdf

• Teng Wang, Suren Byna, Glenn Lockwood, Philip Carns, Shane Snyder, Sunggon Kim,
and Nicholas Wright, "A Zoom-in Analysis of I/O Logs to Detect Root Causes of I/O
Performance Bottlenecks", IEEE/ACM CCGrid
2019 https://sdm.lbl.gov/~sbyna/research/papers/2019/201905-CCGrid-ZoomIn_IO.pdf

• Next class: Tuning I/O performance automatically

32

https://sdm.lbl.gov/~sbyna/research/papers/201809_IOMiner_Cluster_2018_Teng.pdf
https://sdm.lbl.gov/~sbyna/research/papers/2019/201905-CCGrid-ZoomIn_IO.pdf

