CSE 5449: Intermediate Studies in Scientific Data Management

Lecture 15: Automatically tuning parallel 1/O performance

Dr. Suren Byna

The Ohio State University

E-mail: byna.1@osu.edu

https://sbyna.github.io

03/02/2023

• Any questions?

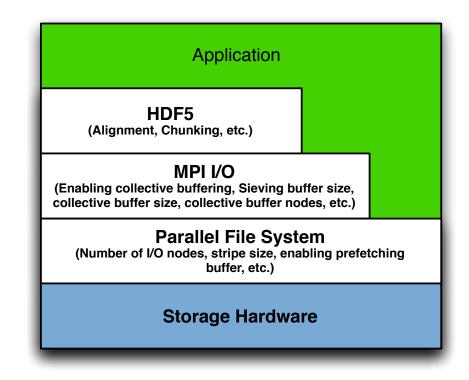
• Progress of the project

- Today's class
 - How to tune I/O performance automatically?

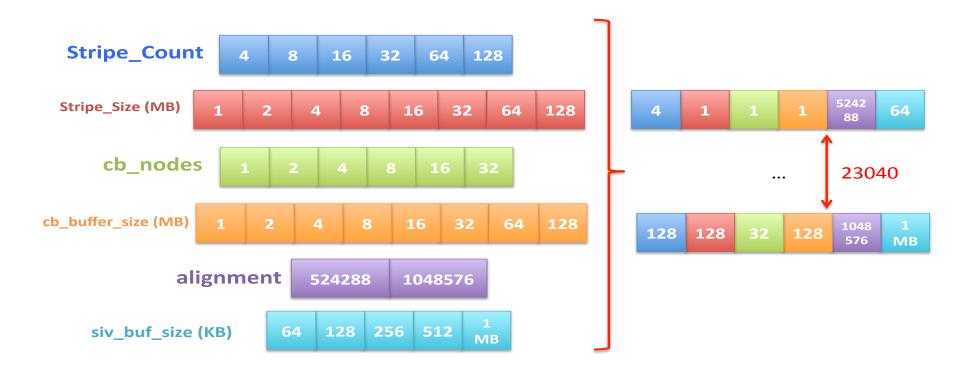
Complexity of Parallel I/O Sub-system

Parallel I/O software stack

- Application
- High-level I/O libraries and data models
- I/O middleware
- Parallel file system
- Options for performance
 optimization
- Complex inter-dependencies among layers

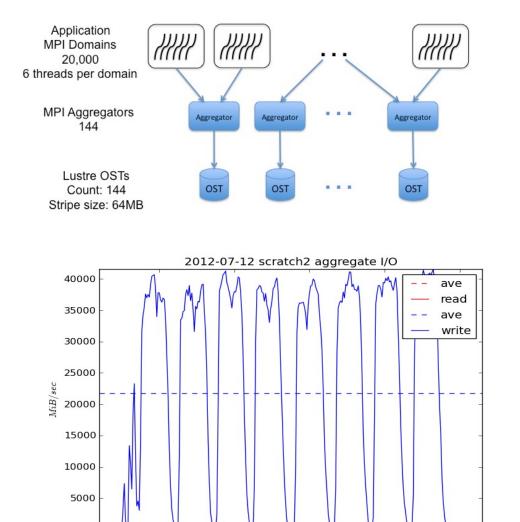


The whole space visualized



Manual tuning for writing trillion particle datasets

- Simulation of magnetic reconnection (a space weather phenomenon) with VPIC code
 - 120,000 cores
 - 8 arrays (HDF5 datasets)
 - 32 TB to 42 TB files at 10 time steps
- Extracted I/O kernel
- M Aggregators to 1 shared file
- Trial-and-error selection of Lustre file system parameters while scaling the problem size
- Reached peak performance in many instances in a real simulation



14:30:00

14:35:00

14:40:00

24:20:00

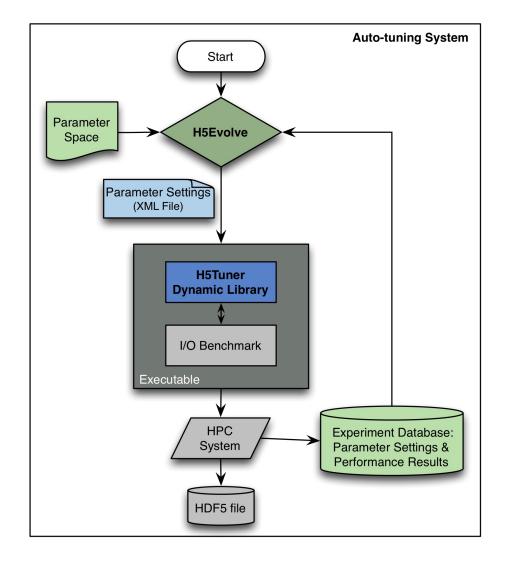
14:25:00

Tuning combinations are abundant

- Searching through all combinations manually is impractical
- Users, typically domain scientists, should not be burdened with tuning
- Performance auto-tuning has been explored heavily for optimizing matrix operations
- Auto-tuning for parallel I/O is challenging due to shared I/O subsystem and slow I/O
- Need a strategy for reduce the search space with some knowledge

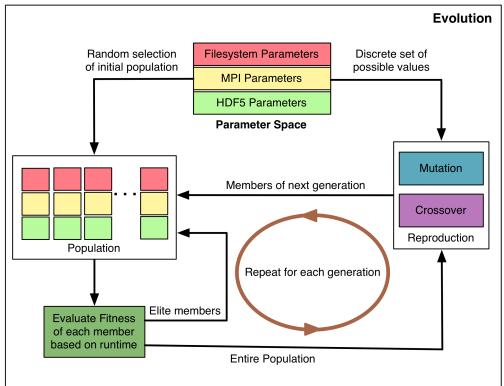
Our solution: I/O Auto-tuning

- Auto-tuning framework to search the parameter space with reduced number of combinations
- HDF5 I/O library sets the optimization parameters
- H5Tuner: Dynamic interception of HDF5 calls
- H5Evolve: Genetic algorithm-based selection



Earlier version: Genetic Algorithm-based

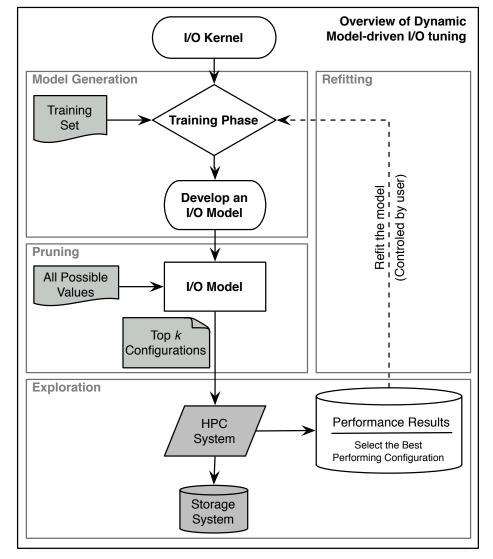
- GA evaluates fitness (I/O performance) and selects members based on least runtime and on mutation of various optimization parameters
 - Problems
 - Long search time (more than 12 hours)
 - Limited general purpose applicability for different problem sizes



B. Behzad et al. "Taming Parallel I/O Complexity with Auto-Tuning", SC13

Dynamic Model-driven Auto-tuning

- Auto-tuning using empirical performance models of I/O
- Steps
 - Training phase to develop an I/O model
 - Pruning phase to select the top-K configurations
 - Exploration phase to select the best configuration
 - Refitting step to refine performance model



Training phase: Developing I/O models

- Faster reduction of search space: A statistical approach for generating empirical prediction models for parallel I/O performance
- Our goal is not to predict I/O performance accurately, but to reduce the parameter search space
- I/O layers and parameters considered
 - Application: File size
 - HDF5: Chunking size, alignment
 - MPI-IO: Number of aggregators, collective buffer size
 - Lustre: Stripe size and stripe count

Performance Model - Parameters

- Independent variables/parameters (e.g., the stripe count)
 - $\mathbf{x} = [\mathbf{x}_1, \cdots, \mathbf{x}_{nx}]$
- Scalar-valued output/dependent variable (i.e., write time)
 y(x)
 - Data collected from a set of experiments is of the form { $(x^{j},y^{j}) : j = 1,...,n_{y}$ }

Empirical Performance Model

Non-linear regression model

$$\mathbf{m}(x;\beta) = \sum_{k=1}^{n_b} \beta_k \phi_k(x)$$

- Linear combinations of n_b non-linear, low polynomial basis functions (ϕ_k) , and hyper-parameters β (selected with standard regression approach) for a parameter configuration of x
- For example:

$$m(\mathbf{x}) = \beta_1 + \beta_2 \frac{1}{s} + \beta_3 \frac{1}{a} + \beta_4 \frac{c}{s} + \beta_5 \frac{f}{c} + \beta_6 \frac{f}{s} + \beta_7 \frac{cf}{a}$$

• f: file size; a: number of aggregators; c: stripe count; s: stripe size

$$\mathcal{B}_{i} = [10.59, 68.99, 59.83, -1.23, 2.26, 0.18, 0.01]$$

Model Training

- Developed empirical model based on small-scale experiments
 - Time for pruned search space exploration: ~2 hours
 - 6X to 12X improvement over GA for small-scale training phase

32	216
64	120
128	72
256	60
512	60
1024	0
2048 0	
	64 128 256 512 1024

Experimental Setup: Platforms

NERSC/Hopper

- Cray XE6
- Lustre file system (156 OSTs, 26 OSSs)
- Peak I/O BW: 35 GB/s

NERSC/Edison

- Cray XC30
- Lustre file system (96 OSTs, 24 OSSs)
- Peak I/O BW: 48 GB/s

TACC/Stampede

- Dell PowerEdge C8220
- Lustre file system (160 OSTs, 58 OSSs)
- Peak I/O BW: 159 GB/s

Experimental Setup: Application I/O Kernels

• VPIC-IO

- IO-Kernel manually derived from VPIC plasma physics application
- Writes 8 1D arrays

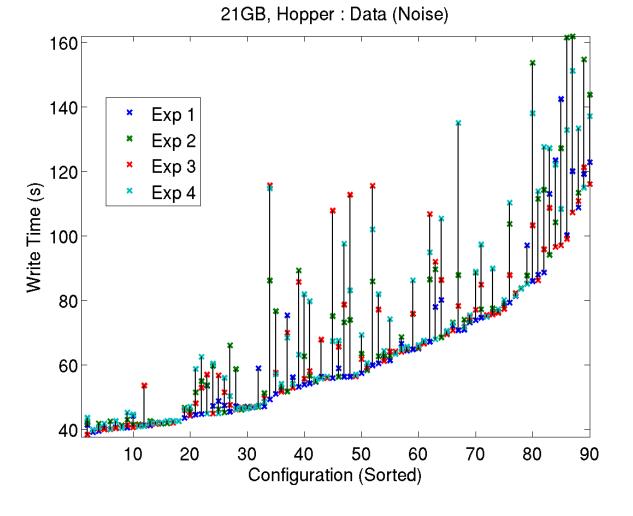
• VORPAL-IO

- IO-Kernel manually derived from VORPAL accelerator modeling
- Writes 3D block-structured grid
- GCRM-IO
 - IO-Kernel manually derived from GCRM atmospheric model
 - Writes 3D block-structured mesh

Parallel I/O – Performance variation

Parallel I/O performance varies significantly due to interference from other users

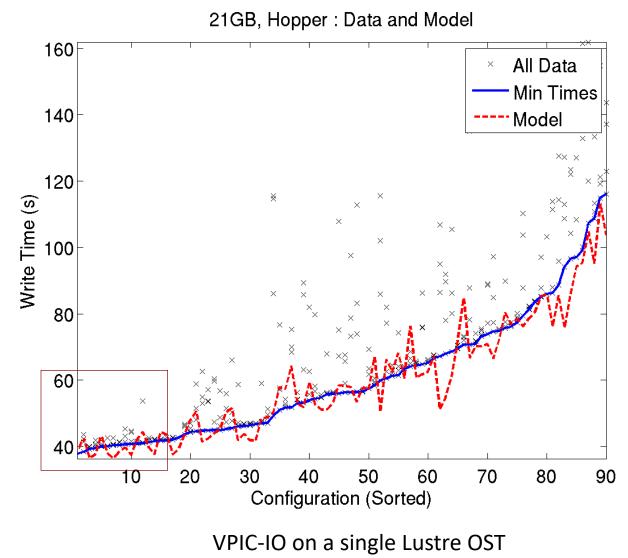
Variation is low for high-performant configurations



VPIC-IO on a single Lustre OST

Performance model accuracy

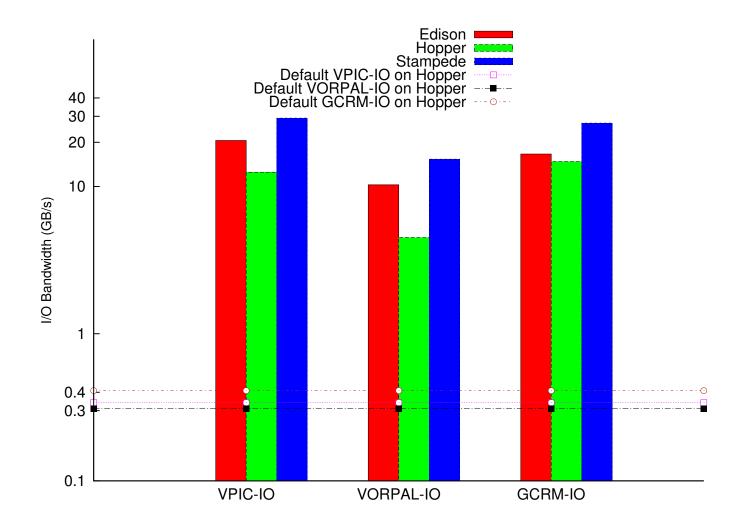
For high-performant configurations, model is accurate.



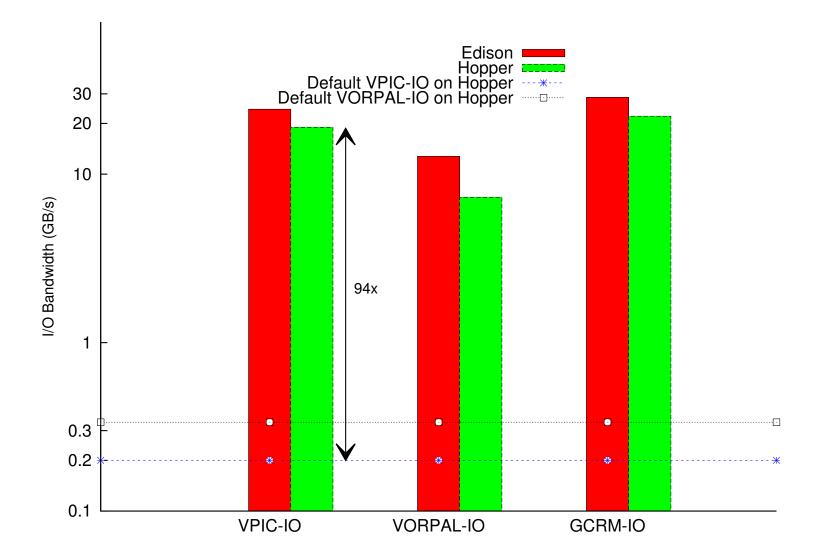
Performance Results – VPIC-IO

# of cores	File Size (GB)	Modeling Bandwidth (MB/s)	GA Bandwidth (MB/s)	Default Bandwidth (MB/s)	Speedup
128	32	2075	3034	472	4.4X
512	128	5185	-	409	12X
1024	256	6182	-	337	18X
2048	512	11422	14900	412	28X
4096	1024	14892	17620	365	41X
8192	2048	18857	-	345	54X

Performance Improvement: 4K cores



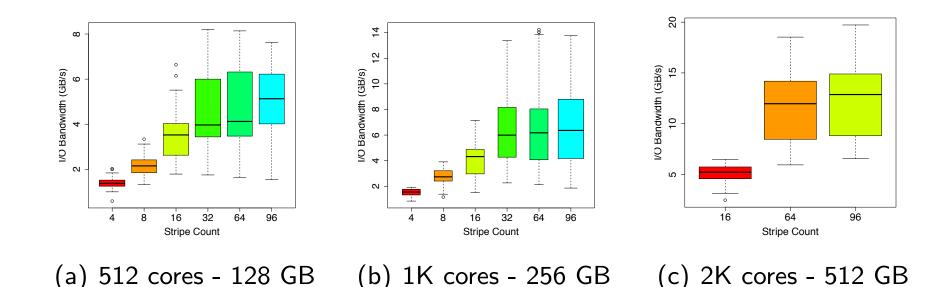
Performance Improvement: 8K cores



Time to prune search space

				App.	
Method	Training Phase	Applying the Model	Per App. &	Runtime	
			Scale Tuning	(VPIC-8192	
				on Hopper)	
Genetic	N/A N/A > 10		> 10 hours	118 seconds	
Algorithm				ITO SECONDS	
Model	> 10 hours	< 1 minute	< 1 hour	100 seconds	
Fitting	(can reuse)	(automatic)		TOO SECONDS	
Default	N/A	N/A	N/A	> 3 hours	
Config.					

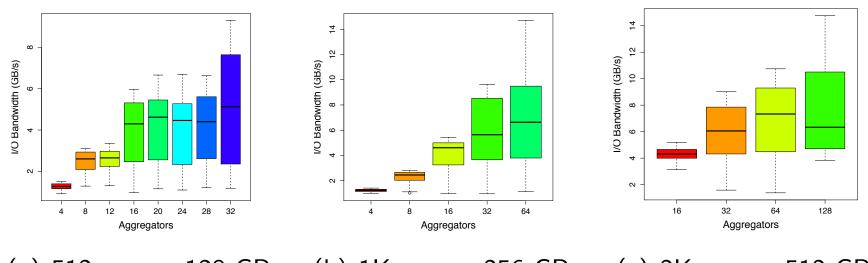
Analysis of Inter-dependencies: Stripe Count



Effect of Lustre's stripe count at three scales of VPIC-IO on Edison

- As we increase the problem size, increasing Lustre's stripe count leads to more parallelism and therefore results in an improvement in the I/O bandwidth
- This applies to all platforms

Inter-dependencies: Number of aggregators

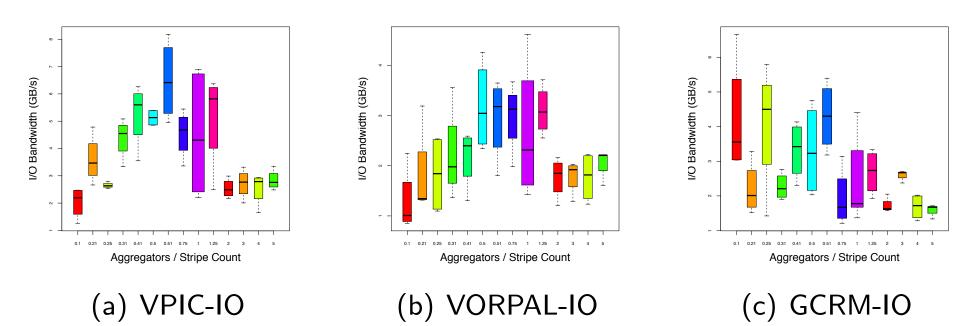


(a) 512 cores - 128 GB (b) 1K cores - 256 GB (c) 2K cores - 512 GB

Effect of MPI-IO aggregators at three scales of VPIC-IO on Stampede

• As we increase the problem size, increasing MPI-IO aggregators gives better performance

Inter-dependencies: Aggregators to Stripe count ratio



Ratio of MPI-IO's aggregators and Lustre's stripe count on three different applications on

2K cores of Hopper - 512 GB of data

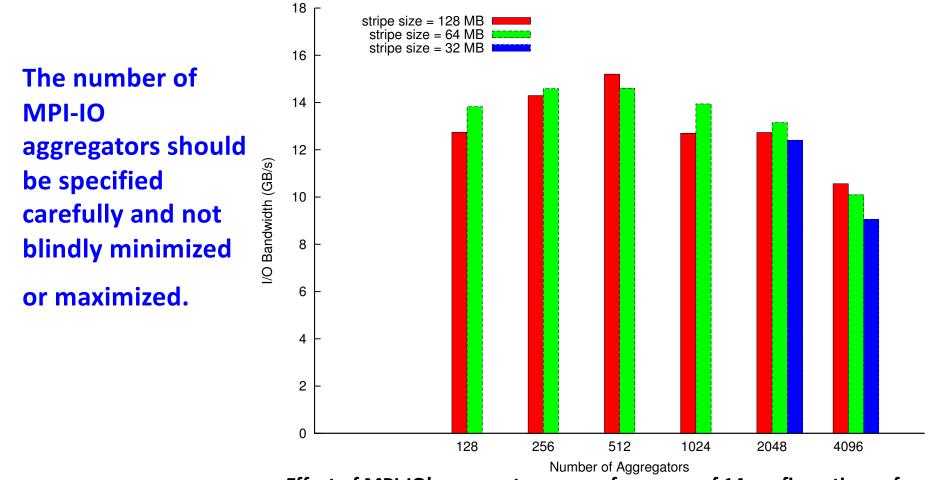
• The number of aggregators each OST handles has an impact on concurrency of Lustre and the communication between an aggregator and an OST

Inter-dependencies: Stripe size matters

exp_id	С	s	а	f (GB)	time (s)	bandwidth (GB/s)
0	156	1	1024	1024	58.87	17.39
1	156	2	1024	1024	49.84	20.54
2	156	4	1024	1024	47.06	21.75
3	156	8	1024	1024	42.11	24.31
4	156	16	1024	1024	38.99	26.25
5	156	32	1024	1024	40.28	25.41
6	156	64	1024	1024	35.06	29.20
7	156	128	1024	1024	44.96	22.77
8	128	1	1024	1024	61.33	16.69
9	128	2	1024	1024	65.87	15.54
10	128	4	1024	1024	58.94	17.37
11	128	8	1024	1024	54.72	18.71

Table: Top twelve configurations predicted by our model for VPIC-IO on 4K cores of Stampede

Inter-dependencies: Aggregators and stripe size



Effect of MPI-IO's aggregators on performance of 14 configurations of

VORPAL-IO on 16K cores of Edison. Stripe count is fixed at 96

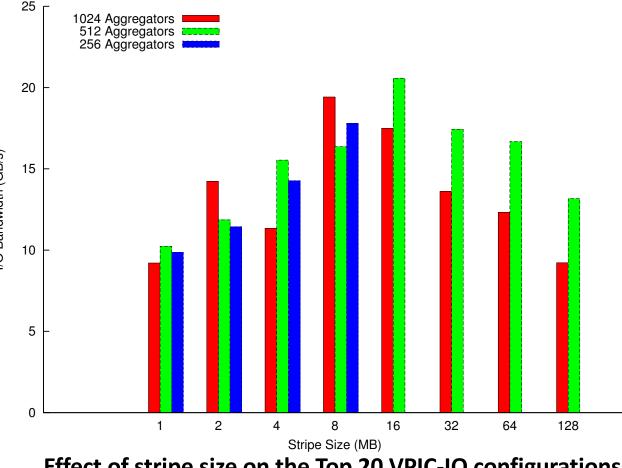
Inter-dependencies: Stripe size and aggregators

Two-fold difference between poor and best performing On Edison, best stripe size was

16MB while on

64MB

Stampede it was



Effect of stripe size on the Top 20 VPIC-IO configurations

on 4K cores of Edison. Stripe count is fixed at 96

Conclusions

- It is challenging to obtain maximum performance from I/O subsystems due to interdependencies among software libraries and their tuning parameters
- Introduced a model-driven tuning framework that uses non-linear regression models to find the top performing configurations
- Achieve significant portion of the available I/O performance on various HPC platforms for a range of applications
- We shed some light on the complex interdependencies of different parallel I/O tunable parameters

Summary of today's class

- Combinations of tuning options is significantly large
- Used genetic algorithms to find tuned combination takes a long time to train
- Using analytical modeling-based approach is faster, but applying to different scales and different applications is difficult
- Next class: Recap of the first half