
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 15: Automatically tuning parallel I/O performance

03/02/2023

https://sbyna.github.io/


Today’s class

• Any questions?

• Progress of the project

• Today’s class –
• How to tune I/O performance automatically?

1



2

Complexity of Parallel I/O Sub-system

HDF5
(Alignment, Chunking, etc.)

MPI I/O
(Enabling collective buffering, Sieving buffer size, 
collective buffer size, collective buffer nodes, etc.)

Application

Parallel File System
(Number of I/O nodes, stripe size, enabling prefetching 

buffer, etc.)

Storage HardwareStorage Hardware

• Parallel I/O software stack
• Application
• High-level I/O libraries and data 

models
• I/O middleware
• Parallel file system

• Options for performance 
optimization

• Complex inter-dependencies 
among layers



Tuning parameter space

The$whole$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&1&1&4&

1&
MB&

1048
576&128&32&128&128&

…$ 23040$

4



• Simulation of magnetic reconnection 
(a space weather phenomenon) 
with VPIC code

• 120,000 cores
• 8 arrays (HDF5 datasets)
• 32 TB to 42 TB files at 10 time steps

• Extracted I/O kernel
• M Aggregators to 1 shared file
• Trial-and-error selection of Lustre 

file system parameters while scaling 
the problem size

• Reached peak performance in 
many instances in a real simulation

5

Manual tuning for writing trillion particle datasets

More details: SC12 and CUG 2013 papers



7

Tuning combinations are abundant

• Searching through all combinations manually is impractical

• Users, typically domain scientists, should not be burdened with tuning

• Performance auto-tuning has been explored heavily for optimizing matrix 
operations

• Auto-tuning for parallel I/O is challenging due to shared I/O subsystem and 
slow I/O

• Need a strategy for reduce the search space with some knowledge



8

Our solution: I/O Auto-tuning

• Auto-tuning framework to search 
the parameter space with reduced 
number of combinations
• HDF5 I/O library sets the 

optimization parameters
• H5Tuner: Dynamic interception of 

HDF5 calls
• H5Evolve: Genetic algorithm-based 

selection



9

Earlier version: Genetic Algorithm-based

• GA evaluates fitness (I/O performance) and selects 
members based on least runtime and on mutation of 
various optimization parameters

§ Problems
– Long search time (more 

than 12 hours)
– Limited general purpose 

applicability for 
different problem sizes

B. Behzad et al. “Taming Parallel I/O Complexity with Auto-Tuning”, SC13



10

Dynamic Model-driven Auto-tuning
• Auto-tuning using empirical 

performance models of I/O
• Steps

• Training phase to develop 
an I/O model

• Pruning phase to select the 
top-K configurations

• Exploration phase to select 
the best configuration

• Refitting step to refine 
performance model

Overview of Dynamic
Model-driven I/O tuning

Exploration

Pruning

Model Generation

HPC 
System

Training Phase

Storage 
System

Develop an
I/O Model

Training 
Set

I/O Kernel

Top k 
Configurations

R
efi

t t
he

 m
od

el
(C

on
tro

le
d 

by
 u

se
r)

Performance Results
Select the Best 

Performing Configuration

I/O Model
All Possible 

Values 

Refitting



• Faster reduction of search space: A statistical approach 
for generating empirical prediction models for parallel 
I/O performance

• Our goal is not to predict I/O performance accurately, 
but to reduce the parameter search space

• I/O layers and parameters considered
• Application: File size
• HDF5: Chunking size, alignment
• MPI-IO: Number of aggregators, collective buffer size 
• Lustre: Stripe size and stripe count

11

Training phase: Developing I/O models



• Independent variables/parameters (e.g., the stripe count)
• x = [x1,··· , xnx]

§ Scalar-valued output/dependent variable (i.e., write time) 
• y(x)

• Data collected from a set of experiments is of the 
form {�(xj,yj) : j = 1,...,ny}

12

Performance Model - Parameters



13

Empirical Performance Model
• Non-linear regression model

• Linear combinations of nb non-linear, low polynomial basis functions 
(ϕk), and hyper-parameters β (selected with standard regression 
approach) for a parameter configuration of x

• For example:

• f: file size; a: number of aggregators;  c: stripe count; s: stripe size

m(x;β) = βkφk (x)
k=1

nb

∑

β
i

= [10.59, 68.99, 59.83, −1.23, 2.26, 0.18, 0.01]

0.1

0.3

0.4

1

10

20

30

40

VPIC-IO VORPAL-IO GCRM-IO

I/
O

 B
a

n
d

w
id

th
 (

G
B

/s
)

Edison
Hopper

Stampede
Default VPIC-IO

Default VORPAL I/O
Default GCRM I/O

(a) 4K cores

0.1

0.2

0.3

1

10

20

30

VPIC-IO VORPAL-IO GCRM-IO

I/
O

 B
a

n
d

w
id

th
 (

G
B

/s
)

Edison
Hopper

Default VPIC-IO
Default VORPAL I/O

(b) 8K cores

 0

 5

 10

 15

 20

 25

 30

VPIC-IO VORPAL-IO GCRM-IO

I/
O

 B
a

n
d

w
id

th
 (

G
B

/s
)

Edison
Hopper

(c) 16K cores

Figure 4: Summary of the best I/O performance obtained in the top-20 configurations for each I/O benchmark running on
(a) 4K cores, (b) 8K cores, and (c) 16K cores. Note that (a) and (b) are log-scale plots.

formed our model on the basis of the remaining 216 con-
figurations. As illustrated in Figure 3, the five-term model
is as follows:

m(c, s, a) = �1 + �2
c

a
+ �3

s

a
+ �4

1

a
+ �5

a

cs
. (2)

We observed this model reproducing the training data
well. The accuracy is assessed by having acceptable sta-
tistical measures (e.g. R-squared of 0.95 for VPIC on Stam-
pede). Furthermore, even though the models we consider in
this paper do not directly account for the variability, we
observe that our realized predictions tend to yield more
accurate predictions for those configurations where little
variability is seen as can be seen in Figure 2.

Thus far, we have only considered a single file size
when building nonlinear regression models. This modeling
approach reflects the typical workflow in automatic empir-
ical performance tuning, where one wishes to determine
parameter values for actionable decisions. One of the main
benefits of our models is that their simple, parameterized,
algebraic form allows us to very quickly solve optimization
problems involving them.

B. Training the Performance Models
We now consider models for multiple different file sizes.

The four independent variables, i.e., x = (c, s, a, f), form a
total of 81 possible terms in the basis set.

We conducted experiments for all the three I/O kernels
mentioned in Section III-B and different file sizes on all the
three platforms, i.e., Hopper, Edison, and Stampede. The
training set size on 512 cores was 336 configurations, on
1028 cores it was 180 and on 2048 cores it was 96. The size
of the training set is decreased as the core counts and file
sizes increase due to the increase in the required resources.

The selection of training set can be automatic with simple
heuristics of limits on the allowable value ranges in order to
cover the parameter space well. For example, the maximum
number of aggregators are limited by the number of MPI
processes of the application. Additionally, commands such
as “lfs osts” obtains the number of OSTs available on a

Lustre file system, which can be stored in a configuration
file. Once the limits are known, to establish a training set
one can use all discrete integer values as possible tunable
parameter values. Another strategy is to use powers-of-
two or halves-of-max-allowable values. An expert can set
these values more judiciously. Since the training is done
infrequently, this can be decided based on the training set
exploration time budget.

Following the forward-selection approach on the entire
training data set, as we defined in [1], we obtain one model
for each application on each platform. Due to lack of space,
we only provide the model for VPIC-IO on Edison:

m(x) = �1+�2
1

s
+�3

1

a
+�4

c

s
+�5

f

c
+�6

f

s
+�7

cf

a
, (3)

with a fit to the data yielding

�̂ = [10.59, 68.99, 59.83, �1.23, 2.26, 0.18, 0.01] .

The terms in (3) are interpretable from the parallel I/O
point of view. For instance, write time would have an inverse
relationship with number of aggregators and stripe count,
because as we increase those the I/O performance tend to
increase; It should have a linear relationship with file size as
increasing the file size causes an increase in the write time.
We describe the detailed validation of this model to section
V-B. Additionally, in the next section we will analyze in
detail this model’s ability to perform space reduction and
optimization for a variety of I/O tuning tasks.

C. Refitting the Performance Models
After training the model for the search space pruning

step, the process of choosing the top k configurations only
involves evaluating the model, a task whose computational
expense is negligible (relative to evaluation of a configu-
ration) for our simple choice of models. Therefore, using
such an approach will only require an evaluation of a few
configurations on the platform, decreasing the optimization
time significantly. In our experiments, the top twenty config-
urations always resulted in high I/O bandwidth. As opposed
to our existing GA-based approach, our approach does not



14

Model Training

# of cores file size (GB) training set size 
128 32 216 
256 64 120 
512 128 72 

1024 256 60 
2048 512 60 
4096 1024 0
8192 2048 0

• Developed empirical model based on small-scale 
experiments

• Time for pruned search space exploration: ~2 hours 
• 6X to 12X improvement over GA for small-scale training phase



15

Experimental Setup: Platforms
• NERSC/Hopper

• Cray XE6
• Lustre file system (156 OSTs, 26 OSSs)
• Peak I/O BW: 35 GB/s

• NERSC/Edison
• Cray XC30
• Lustre file system (96 OSTs, 24 OSSs)
• Peak I/O BW: 48 GB/s

• TACC/Stampede
• Dell PowerEdge C8220
• Lustre file system (160 OSTs, 58 OSSs)
• Peak I/O BW: 159 GB/s



16

Experimental Setup: Application I/O Kernels

• VPIC-IO
• IO-Kernel manually derived from VPIC plasma physics 

application
• Writes 8 1D arrays

• VORPAL-IO
• IO-Kernel manually derived from VORPAL accelerator 

modeling
• Writes 3D block-structured grid

• GCRM-IO
• IO-Kernel manually derived from GCRM atmospheric model
• Writes 3D block-structured mesh



17

Parallel I/O – Performance variation

Parallel I/O 
performance varies 
significantly due to 
interference from other 
users

Variation is low for 
high-performant 
configurations 

VPIC-IO on a single Lustre OST



18

Performance model accuracy

For high-performant 
configurations, model 
is accurate.

VPIC-IO on a single Lustre OST



19

Performance Results – VPIC-IO

# of cores File Size (GB) Modeling 
Bandwidth 

(MB/s)

GA 
Bandwidth 

(MB/s)

Default
Bandwidth 

(MB/s)

Speedup

128 32 2075 3034 472 4.4X

512 128 5185 - 409 12X

1024 256 6182 - 337 18X

2048 512 11422 14900 412 28X

4096 1024 14892 17620 365 41X

8192 2048 18857 - 345 54X



20

Performance Improvement: 4K cores

0.1

0.3
0.4

1

10

20

30
40

VPIC-IO VORPAL-IO GCRM-IO

I/
O

 B
a
n
d
w

id
th

 (
G

B
/s

)

Edison
Hopper

Stampede
Default VPIC-IO on Hopper

Default VORPAL-IO on Hopper
Default GCRM-IO on Hopper



21

Performance Improvement: 8K cores

0.1

0.2

0.3

1

10

20

30

VPIC-IO VORPAL-IO GCRM-IO

I/
O

 B
a
n
d
w

id
th

 (
G

B
/s

)

94x

Edison
Hopper

Default VPIC-IO on Hopper
Default VORPAL-IO on Hopper



22

Time to prune search space
Time to Prune Search Space

Method
Training
Phase

Applying
the Model

Per App. &
Scale Tuning

App.
Runtime

(VPIC-8192
on Hopper)

Genetic
Algorithm

N/A N/A > 10 hours 118 seconds

Model
Fitting

> 10 hours
(can reuse)

< 1 minute
(automatic)

< 1 hour 100 seconds

Default
Config.

N/A N/A N/A > 3 hours

Babak Behzad Dynamic Model-driven Parallel I/O Performance Tuning



• As we increase the problem size, increasing Lustre’s
stripe count leads to more parallelism and therefore 
results in an improvement in the I/O bandwidth
• This applies to all platforms

23

Analysis of Inter-dependencies: Stripe Count
Analysis of the Interdependencies - Training Set

●

●●

●

●

●

4 8 16 32 64 96

2
4

6
8

Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(a) 512 cores - 128 GB

●

●
●
●

4 8 16 32 64 96

2
4

6
8

10
12

14

Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(b) 1K cores - 256 GB

●

16 64 96

5
10

15
20

Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(c) 2K cores - 512 GB

Figure: E↵ect of Lustre’s stripe count at three scales of VPIC-IO on
Edison

• As we increase the size of a file, increasing Lustre’s stripe
count, irrespective of the platform, leads to more parallelism
and therefore results in an improvement in the I/O bandwidth

Babak Behzad Dynamic Model-driven Parallel I/O Performance Tuning

Effect of Lustre’s stripe count at three scales of VPIC-IO on Edison



24

Inter-dependencies: Number of aggregators
Analysis of the Interdependencies - Training Set

4 8 12 16 20 24 28 32

2
4

6
8

Aggregators

I/O
 B

an
dw

id
th

 (G
B/

s)

(a) 512 cores - 128 GB

●

4 8 16 32 64

2
4

6
8

10
12

14

Aggregators

I/O
 B

an
dw

id
th

 (G
B/

s)

(b) 1K cores - 256 GB

16 32 64 128

2
4

6
8

10
12

14

Aggregators

I/O
 B

an
dw

id
th

 (G
B/

s)

(c) 2K cores - 512 GB

Figure: E↵ect of MPI-IO aggregators at three scales of VPIC-IO on
Stampede

• Similar to stripe count, increasing the number of aggregators
helps in improving the I/O performance for VPIC-IO

Babak Behzad Dynamic Model-driven Parallel I/O Performance Tuning

• As we increase the problem size, increasing MPI-IO 
aggregators gives better performance

Effect of MPI-IO aggregators at three scales of VPIC-IO on Stampede



25

Inter-dependencies: Aggregators to Stripe count ratio

Analysis of the Interdependencies - Training Set

0.1 0.21 0.25 0.31 0.41 0.5 0.51 0.75 1 1.25 2 3 4 5

1
2

3
4

5
6

7
8

Aggregators / Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(a) VPIC-IO

0.1 0.21 0.25 0.31 0.41 0.5 0.51 0.75 1 1.25 2 3 4 5

1
2

3
4

Aggregators / Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(b) VORPAL-IO

0.1 0.21 0.25 0.31 0.41 0.5 0.51 0.75 1 1.25 2 3 4 5

1
2

3
4

5
6

Aggregators / Stripe Count

I/O
 B

an
dw

id
th

 (G
B/

s)

(c) GCRM-IO

Figure: Ratio of MPI-IO’s aggregators and Lustre’s stripe count on three
di↵erent applications on 2K cores of Hopper - 512 GB of data

• As the number of aggregators each OST handles has an
impact on concurrency of Lustre and the communication
between an aggregator and an OST

Babak Behzad Dynamic Model-driven Parallel I/O Performance Tuning

• The number of aggregators each OST handles has an 
impact on concurrency of Lustre and the 
communication between an aggregator and an OST

Ratio of MPI-IO’s aggregators and Lustre’s stripe count on three different applications on 

2K cores of Hopper - 512 GB of data



26

Inter-dependencies: Stripe size matters
Analysis of the Interdependencies - Testing Set

exp id c s a f (GB) time (s)
bandwidth
(GB/s)

0 156 1 1024 1024 58.87 17.39
1 156 2 1024 1024 49.84 20.54
2 156 4 1024 1024 47.06 21.75
3 156 8 1024 1024 42.11 24.31
4 156 16 1024 1024 38.99 26.25
5 156 32 1024 1024 40.28 25.41
6 156 64 1024 1024 35.06 29.20
7 156 128 1024 1024 44.96 22.77
8 128 1 1024 1024 61.33 16.69
9 128 2 1024 1024 65.87 15.54
10 128 4 1024 1024 58.94 17.37
11 128 8 1024 1024 54.72 18.71

Table: Top twelve configurations predicted by our model for VPIC-IO on
4K cores of Stampede

Babak Behzad Dynamic Model-driven Parallel I/O Performance Tuning



27

Inter-dependencies: Aggregators and stripe size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

128 256 512 1024 2048 4096

I/
O

 B
a
n
d
w

id
th

 (
G

B
/s

)

Number of Aggregators

stripe size = 128 MB
stripe size = 64 MB
stripe size = 32 MB

Effect of MPI-IO’s aggregators on performance of 14 configurations of 

VORPAL-IO on 16K cores of Edison. Stripe count is fixed at 96

The number of 
MPI-IO 
aggregators should 
be specified 
carefully and not 
blindly minimized 

or maximized.



28

Inter-dependencies: Stripe size and aggregators

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64 128

I/
O

 B
a
n
d
w

id
th

 (
G

B
/s

)

Stripe Size (MB)

1024 Aggregators
512 Aggregators
256 Aggregators

Effect of stripe size on the Top 20 VPIC-IO configurations 

on 4K cores of Edison. Stripe count is fixed at 96

Two-fold difference 
between poor and 
best performing

On Edison, best 
stripe size was 
16MB while on 
Stampede it was 

64MB



29

Conclusions

• It is challenging to obtain maximum performance from I/O subsystems 
due to interdependencies among software libraries and their tuning 
parameters
• Introduced a model-driven tuning framework that uses non-linear 

regression models to find the top performing configurations
• Achieve significant portion of the available I/O performance on various 

HPC platforms for a range of applications
• We shed some light on the complex interdependencies of different 

parallel I/O tunable parameters



Summary of today’s class

• Combinations of tuning options is significantly large

• Used genetic algorithms to find tuned combination – takes a long time to 
train

• Using analytical modeling-based approach is faster, but applying to 
different scales and different applications is difficult

• Next class: Recap of the first half

30


