
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 16: Pre-spring break Recap

03/07/2023

https://sbyna.github.io/

Today’s class

• Any questions?

• Progress of the project

• Recap of all the topics discussed so far

1

Data life cycle - An overview

2

Simulations Experiments

Observations

Files

Parallel file systems,
archives

Object stores, Data
lakes, warehouses, etc.

File systems, archives,
etc.

Cloud
High performance
computing (HPC)
centers

Data repositories

Data
producers

Data
movement

Data
storage

Data
movement

Files

HPC centers

Laptops

Data to insight (visualizations, analyses)

Cloud

Data life cycle of a plasma physics simulation and analysis

3

Parallel file systems, archives

Simulation application

Data Vis/Analysis Display

Traditional Visualization Pipeline

Data life cycle of a plasma physics simulation and analysis

4

Parallel file systems, archives

Simulation application FastBit & FastQuery

Data +
Index

Vis/Analysis Display

Query-driven Visualization Pipeline

Query

1.0
0.5

0.0
-0.5

-1.0 Ux

Uz

Uy

1.0

0.5

0.0

-0.5

-1.0

-1.0

-0.5

0.0

0.5

1.0

1.880

Energy

1.735

1.590

1.445

1.300

-0.5

Ux

0.0U
y

#Particles

-1.0 0.0 0.5 1.0

-0.5

-1.0

0.5

1.0

0

9809

1.987e4

2.993e4

3.999e4

Data life cycle of experimental & observation use cases

5

Collect from
sensors,
experiments,
simulations

Acquire

Move from
instrument to
computing
center
(supercomputing
/ cloud)

Transfer

Organize,
annotate,
filter, encrypt,
compress

Clean

Analyze, mine,
model, learn,
infer, derive,
predict

Use/Reuse

Disseminate
& aggregate,
using portals,
databases

Publish

Index, curate,
age, track
provenance,
purge

Preserve

From a slide from Debbie Bard’s SuperFacility presentation

Machine learning life cycle

6Source: https://www.educba.com/machine-learning-life-cycle/

What does scientific data look like

7

Source: MACSIO, LLNL
https://github.com/LLNL/MACSio/blob/master/doc/scientific_data_objects.png

Traditional types of data - modeling and simulation Typical data used for AI / ML

Source: Rangan Sukumar’s slides presented at
Monterey Data Workshop on 04/21/2022

Storage systems in high performance compute systems

IO Gap

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

IO Gap

Shared burst buffer

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

Conventional Current
Eg. Cori @ NERSC

Upcoming: Aurora,
Frontier, etc.

Memory

Parallel file system
(Lustre, GPFS)

SSD-based Node-local
storage

HBM
GPU

memory

SSD-based Parallel File System

Archival storage (HPSS tape)

8

Different types of parallelism – Flynn’s taxonomy

• Problem – Data stream
• Work – Instruction stream

9

• Single
• Multiple

Image from LLNL parallel computing tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

• Types of parallel I/O
• 1 writer/reader, 1 file
• N writers/readers, N files (File-per-

process)
• N writers/readers, 1 file
• M writers/readers, 1 file

• Aggregators
• Two-phase I/O

• M aggregators, M files (file-per-
aggregator)
• Variations of this mode

10

Parallel I/O – Application view

P0 P1 Pn-1 Pn…

file.0

1 Writer/Reader, 1 File

P0 P1 Pn-1 Pn…

file.0

n Writers/Readers, n Files

file.1 file.n-1 file.n

P0 P1 Pn-1 Pn…

n Writers/Readers, 1 File
File.1

P0 P1 Pn-1 Pn…

file.0

M Writers/Readers, M Files

file.m

P0 P1 Pn-1 Pn…

M Writers/Readers, 1 File
File.1

Data storage and access – Software layers in HPC systems

12

High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)

HDF5 Groups and Links

lat	lon	temp
12 | 23 | 3.1
15 | 24 | 4.2
17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups
and links
organize
data objects.

Every HDF5 file
has a root group

Parameters
10;100;1000

Timestep
36,000

PHDF5 Implementation Layers
Science Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System

Interconnect network + I/O servers

Disk architecture and layout of data on disk

In a Parallel File System

File A DC B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the stripe size and stripe
count with which the file was created.

header Chunk
index

MPI-IO performance optimizations – Collective buffering
• Also known as two-phase I/O
• A few processes aggregate data to temporary buffers and the data is then

written to file (collective write operations)

16

Image from https://cvw.cac.cornell.edu/ParallelIO/choreography

P0 P1 P2 P3 P0 P1 P2 P3

NetCDF - to store multiple arrays in a single file with metadata

17
Image from Pnetcdf tutorial / Bill Gropp’s slides on MPI-IO

PnetCDF
• PnetCDF is a high-performance parallel I/O library for accessing NetCDF

files
• Parallel I/O library by using MPI-IO

18Image source: cucis.ece.northwestern.edu/projects/PnetCDF

ADIOS2

• ADaptable I/O System 2
• Development led by Oak

Ridge National Laboratory

19Image source: https://adios2.readthedocs.io/

File system – Lustre architecture

• Lustre
• Main components

• Metadata server (MDS)
• Object storage servers

(OSS)
• Object storage targets

(OSTs)

20
Image from: https://www.weka.io/learn/lustre/lustre-file-system-explained

Journaling File System

• A journal to keep track of
uncommitted file system operations
• A separate data structure is used for

keeping track of records – Journal

21

Actual file
system

area

Journal
area

Write
operation

1. W
rite

 to journal lo
g

2. Write data to file system

3.Delete journal log

Log-structured File System

• Instead of making changes to the
journal and file system separately,
logs are embedded into the file
system
• Blocks of data are never modified

• An update operation places a new block
at the end of the file

• Writes always go to the end of the file

22More details: https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf Image source: https://www.quora.com/What-is-the-difference-between-a-journaling-vs-a-log-
structured-file-system

Factors that impact parallel I/O performance

25

• Number of MPI ranks
• Number of I/O requests
• Size of I/O requests
• Number of files
• Number of metadata calls

• File open and close requests

• Number of seek operations
• Contiguous / non-contiguous

requests
• Number of seeks

• Alignment of I/O request with
• File block
• Sub-files

• Shared file or multiple files
• …

• Metadata operations for self-describing property

• Location of metadata

• How many processes are participating in
metadata or data operations

• Alignment in file offsets

• Hyperslab selections
• contiguous / non-contiguous?
• complex hyperslabs construction cost

• Chunking
• Chunk size
• Number of chunks

• Sub-files
• How many? How’s the data aggregated?

• Compression used or not?
• What’s the compression / decompression

cost?
• Where is compression / decompression

executed?

• Does a file need to be exact size of data or can it
have some gaps?

• Cache metadata or not?

• Contiguous / non-
contiguous accesses

• Number of I/O requests
• Size of I/O requests
• POSIX consistency

semantics
• Synchronous /

Asynchronous I/O calls
• Collective or

independent
• If collective:

• Number of aggregators
• Aggregator placement
• Aggregation buffer size
• Aggregator to file

system mapping –
network connections
and block sizes

• Number of storage
servers

• Number of metadata
servers

• Number of storage targets
(stripe count)

• Block size on storage
server

• Page size on storage
target

• Amount of contiguous
data stored on a storage
target (stripe size)

• Traffic on storage targets
• Fullness of storage

targets
• Fragmentation on storage

targets

Applications High-level I/O library MPI-IO File systems

Darshan – How does it work?

26Image from Shane Snyder’s Darshan tutorial

• darshan-runtime and darshan-util

• Instrumentation of I/O calls
• At link time of application OR
• At runtime (using LD_PRELOAD)

• Collects file access statistics
• HDF5, MPI-IO, POSIX-IO, File system layers
• Computes statistics
• Compresses the logs and writes

DXT Explorer

● DXT Explorer
○ Analyze the I/O traces interactively
○ Diagnose and highlight the bottlenecks
○ Provides an actionable set of

recommendations

● Provides an interactive component to I/O
traces
○ Users can visually inspect the I/O behavior

■ Zoom in areas of interest

○ End users provided with solution
recommendations
based on detected bottlenecks

27

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Trace
Collection

if problem persists

Mapping to
Solutions

Visualize data transfers between I/O layers

File system usage

29

.Lustre Striping. .Collective I/O.

.HDF5 Alignment. .HDF5 Defer Metadata Flush.

0 1 2 3 4 5 6 7 8

0 4 8 1 5 9 2 6 10
Rank 1Rank 0 Rank 2

AGGREGATORS
Buffers

PHASE TWO
Write

PHASE ONE
Communication

0 1 2 3 4 5 6 7 8
File Layout

3 7 11
Rank 3

9 10 11

9 10 11

0 1 2 3 4 5 6 7 8
File Layout

9 10 11

0 2 4 6 8 10 1 3 5 7 9 11
OST 1 OST 2

STRIPE SIZE

STRIPE
COUNT

0 1 2 3 4 5 6 7 8
File Layout

9 10 11

0 2 4 6 8 10 1 3 5 7 9 11
OST 1 OST 2

D D D D D D D D
Default

D D D D D D D D
Defer Metadata

METADATA

RUNTIME

Common I/O optimization techniques

OpenPMD

31

● Majority of the read and write requests are small
○ I/O calls are not using the MPI-IO’s collective option

OpenPMD
• Unbalanced data accesses among MPI ranks

32

OpenPMD - Optimizations

● Collective HDF5 metadata were not actually collective due to an issue introduced in HDF5 1.10.5

○ Fixed that issue by using HDF5 1.10.4 and then enabling collective metadata I/O

● DXT Explorer 2.0 suggested larger buffer sizes

○ Used ROMIO hints to set the aggregators to 1 agg/node and set the cb_buffer_size to 16 MB

○ Used GPFS large block I/O

● With HDF5 1.10.4 combined with other optimizations gives a total of 6.8x speedup from baseline

110.6s

BASELINE

16.1s

OPTIMIZED

6.8x

Application-Level Analysis of Cosmology1 IO

● Cosmology1’s IO is well-formed: all jobs have high sequential IO (>75%), low small IO
ratio (< 5%). Low metadata and storage server CPU utilization (<4% and <33%), etc.

● However, IO bandwidth varies between [1,10) GB/s and [10,100)GB/s, which needs a
job-level analysis.

34

Tuning parameter space

The$whole$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&1&1&4&

1&
MB&

1048
576&128&32&128&128&

…$ 23040$

35

36

Dynamic Model-driven Auto-tuning
• Auto-tuning using empirical

performance models of I/O
• Steps

• Training phase to develop
an I/O model

• Pruning phase to select the
top-K configurations

• Exploration phase to select
the best configuration

• Refitting step to refine
performance model

Overview of Dynamic
Model-driven I/O tuning

Exploration

Pruning

Model Generation

HPC
System

Training Phase

Storage
System

Develop an
I/O Model

Training
Set

I/O Kernel

Top k
Configurations

R
efi

t t
he

 m
od

el
(C

on
tro

le
d

by
 u

se
r)

Performance Results
Select the Best

Performing Configuration

I/O Model
All Possible

Values

Refitting

Summary of today’s class

• Today’s class
• Data life cycle
• Data structures used in science data
• Storage systems
• Parallelism and parallel I/O
• High-level parallel I/O libraries
• Factors that impact the parallel I/O performance
• Tuning parallel I/O configurations to optimize performance

• Next class: Class presentations

37

