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Today’s class

• Any questions?

• Progress of the project

• Recap of all the topics discussed so far
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Data life cycle - An overview
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Data life cycle of a plasma physics simulation and analysis
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Parallel file systems, archives

Simulation application

Data Vis/Analysis Display

Traditional Visualization Pipeline



Data life cycle of a plasma physics simulation and analysis
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Parallel file systems, archives

Simulation application FastBit & FastQuery

Data + 
Index

Vis/Analysis Display

Query-driven Visualization Pipeline
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Data life cycle of experimental & observation use cases
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Collect from 
sensors, 
experiments, 
simulations

Acquire

Move from 
instrument to 
computing 
center 
(supercomputing 
/ cloud)

Transfer

Organize, 
annotate, 
filter, encrypt, 
compress

Clean

Analyze, mine, 
model, learn, 
infer,  derive, 
predict

Use/Reuse

Disseminate
& aggregate, 
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databases

Publish

Index, curate, 
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provenance, 
purge

Preserve

From a slide from Debbie Bard’s SuperFacility presentation



Machine learning life cycle

6Source: https://www.educba.com/machine-learning-life-cycle/



What does scientific data look like
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Source: MACSIO, LLNL
https://github.com/LLNL/MACSio/blob/master/doc/scientific_data_objects.png

Traditional types of data - modeling and simulation Typical data used for AI / ML

Source: Rangan Sukumar’s slides presented at 
Monterey Data Workshop on 04/21/2022



Storage systems in high performance compute systems

IO Gap

Memory

Parallel file system 
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Archival Storage 
(HPSS tape)

IO Gap
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Memory
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Different types of parallelism – Flynn’s taxonomy

• Problem – Data stream
• Work – Instruction stream
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• Single
• Multiple

Image from LLNL parallel computing tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial


• Types of parallel I/O
• 1 writer/reader, 1 file
• N writers/readers, N files (File-per-

process)
• N writers/readers, 1 file 
• M writers/readers, 1 file

• Aggregators
• Two-phase I/O

• M aggregators, M files (file-per-
aggregator)
• Variations of this mode 
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Parallel I/O – Application view

P0 P1 Pn-1 Pn…

file.0
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file.0
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Data storage and access – Software layers in HPC systems
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High-level	I/O	libraries	
(HDF5,	NetCDF,	etc.)

Applications

Parallel	I/O	middleware	
(MPI-IO)

Low-level	I/O	libraries	(POSIX-IO)

Storage	hardware

Parallel	File	Systems	(Lustre,	GPFS)



HDF5 Groups and Links

lat | lon | temp
----|-----|-----
12 |  23 |  3.1
15 |  24 |  4.2
17 |  21 |  3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups 
and links 
organize 
data objects.

Every HDF5 file 
has a root group

Parameters
10;100;1000

Timestep
36,000



PHDF5 Implementation Layers
Science Application

Compute node Compute node Compute node

HDF5 Library

MPI Library

HDF5 file on Parallel File System 

Interconnect network + I/O servers

Disk architecture and layout of data on disk



In a Parallel File System

File A DC B

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on the stripe size and stripe 
count with which the file was created.

header Chunk
index



MPI-IO performance optimizations – Collective buffering
• Also known as two-phase I/O
• A few processes aggregate data to temporary buffers and the data is then 

written to file (collective write operations)
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Image from https://cvw.cac.cornell.edu/ParallelIO/choreography

P0 P1 P2 P3 P0 P1 P2 P3



NetCDF - to store multiple arrays in a single file with metadata
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Image from Pnetcdf tutorial / Bill Gropp’s slides on MPI-IO



PnetCDF
• PnetCDF is a high-performance parallel I/O library for accessing NetCDF

files
• Parallel I/O library by using MPI-IO

18Image source: cucis.ece.northwestern.edu/projects/PnetCDF



ADIOS2

• ADaptable I/O System 2
• Development led by Oak 

Ridge National Laboratory

19Image source: https://adios2.readthedocs.io/



File system – Lustre architecture

• Lustre
• Main components

• Metadata server (MDS)
• Object storage servers 

(OSS)
• Object storage targets 

(OSTs)

20
Image from: https://www.weka.io/learn/lustre/lustre-file-system-explained



Journaling File System

• A journal to keep track of 
uncommitted file system operations
• A separate data structure is used for 

keeping track of records – Journal
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Actual file 
system 

area

Journal 
area

Write 
operation

1. W
rite

 to journal lo
g

2. Write data to file system

3.Delete journal log



Log-structured File System

• Instead of making changes to the 
journal and file system separately, 
logs are embedded into the file 
system
• Blocks of data are never modified

• An update operation places a new block 
at the end of the file

• Writes always go to the end of the file

22More details: https://pages.cs.wisc.edu/~remzi/OSTEP/file-lfs.pdf Image source: https://www.quora.com/What-is-the-difference-between-a-journaling-vs-a-log-
structured-file-system



Factors that impact parallel I/O performance
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• Number of MPI ranks
• Number of I/O requests
• Size of I/O requests
• Number of files
• Number of metadata calls

• File open and close requests

• Number of seek operations
• Contiguous / non-contiguous 

requests
• Number of seeks

• Alignment of I/O request with
• File block
• Sub-files

• Shared file or multiple files
• …

• Metadata operations for self-describing property

• Location of metadata

• How many processes are participating in 
metadata or data operations

• Alignment in file offsets

• Hyperslab selections 
• contiguous / non-contiguous?
• complex hyperslabs construction cost

• Chunking 
• Chunk size
• Number of chunks

• Sub-files 
• How many? How’s the data aggregated?

• Compression used or not?
• What’s the compression / decompression 

cost? 
• Where is compression / decompression 

executed?

• Does a file need to be exact size of data or can it 
have some gaps?

• Cache metadata or not?

• Contiguous / non-
contiguous accesses

• Number of I/O requests
• Size of I/O requests
• POSIX consistency 

semantics
• Synchronous / 

Asynchronous I/O calls
• Collective or 

independent
• If collective:

• Number of aggregators
• Aggregator placement
• Aggregation buffer size
• Aggregator to file 

system mapping –
network connections 
and block sizes

• Number of storage 
servers

• Number of metadata 
servers

• Number of storage targets 
(stripe count)

• Block size on storage 
server

• Page size on storage 
target

• Amount of contiguous 
data stored on a storage 
target (stripe size)

• Traffic on storage targets
• Fullness of storage 

targets
• Fragmentation on storage 

targets

Applications High-level I/O library MPI-IO File systems



Darshan – How does it work?

26Image from Shane Snyder’s Darshan tutorial

• darshan-runtime and darshan-util

• Instrumentation of I/O calls
• At link time of application OR
• At runtime (using LD_PRELOAD) 

• Collects file access statistics
• HDF5, MPI-IO, POSIX-IO, File system layers
• Computes statistics
• Compresses the logs and writes



DXT Explorer

● DXT Explorer
○ Analyze the I/O traces interactively
○ Diagnose and highlight the bottlenecks
○ Provides an actionable set of 

recommendations

● Provides an interactive component to I/O 
traces
○ Users can visually inspect the I/O behavior

■ Zoom in areas of interest

○ End users provided with solution 
recommendations
based on detected bottlenecks
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I/O 
Problems

Applying 
I/O Tuning

Interactive 
Exploration

Trace 
Analysis

Trace 
Collection

if problem persists

Mapping to 
Solutions



Visualize data transfers between I/O layers



File system usage
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Common I/O optimization techniques



OpenPMD
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● Majority of the read and write requests are small
○ I/O calls are not using the MPI-IO’s collective option



OpenPMD
• Unbalanced data accesses among MPI ranks
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OpenPMD - Optimizations

● Collective HDF5 metadata were not actually collective due to an issue introduced in HDF5 1.10.5

○ Fixed that issue by using HDF5 1.10.4 and then enabling collective metadata I/O

● DXT Explorer 2.0 suggested larger buffer sizes

○ Used ROMIO hints to set the aggregators to 1 agg/node and set the cb_buffer_size to 16 MB

○ Used GPFS large block I/O

● With HDF5 1.10.4 combined with other optimizations gives a total of 6.8x speedup from baseline

110.6s

BASELINE

16.1s

OPTIMIZED

6.8x



Application-Level Analysis of Cosmology1 IO

● Cosmology1’s IO is well-formed: all jobs have high sequential IO (>75%), low small IO 
ratio (< 5%). Low metadata and storage server CPU utilization (<4% and <33%), etc.

● However, IO bandwidth varies between [1,10) GB/s and [10,100)GB/s, which needs a 
job-level analysis.
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Tuning parameter space

The$whole$space$visualized$

128&64&32&16&8&4&Stripe_Count&

Stripe_Size&(MB)& 32&16&8&4&2&1& 128&64&

32&16&8&4&2&1&cb_nodes&

cb_buffer_size&(MB)& 32&16&8&4&2&1& 128&64&

1048576&524288&alignment&

1&
MB&512&256&128&64&siv_buf_size&(KB)&

64&5242
88&1&1&1&4&

1&
MB&

1048
576&128&32&128&128&

…$ 23040$
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Dynamic Model-driven Auto-tuning
• Auto-tuning using empirical 

performance models of I/O
• Steps

• Training phase to develop 
an I/O model

• Pruning phase to select the 
top-K configurations

• Exploration phase to select 
the best configuration

• Refitting step to refine 
performance model

Overview of Dynamic
Model-driven I/O tuning

Exploration

Pruning

Model Generation

HPC 
System

Training Phase

Storage 
System
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I/O Kernel
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All Possible 

Values 

Refitting



Summary of today’s class

• Today’s class
• Data life cycle
• Data structures used in science data
• Storage systems
• Parallelism and parallel I/O
• High-level parallel I/O libraries
• Factors that impact the parallel I/O performance
• Tuning parallel I/O configurations to optimize performance

• Next class: Class presentations
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