
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 17: Asynchronous I/O

03/23/2023

https://sbyna.github.io/

Today’s class

• Any questions?

• Class presentation topic

• Today’s class –
• HDF5 optimizations – Async I/O

1

Why Async?

2

Async

Sync

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

POSIX asynchronous I/O (AIO)

• Applications initiate one or more
I/O operations that are performed
asynchronously (i.e., in the
background)

• aio_read()
• aio_write()
• aio_fsync()
• lio_listio() – Enqueue

multiple I/O requests using a
single function call

3

Asynchronous I/O control block – to control how asynchronous I/O
operations are performed.

struct aiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */
struct sigevent aio_sigevent; /* Notification
method */ int aio_lio_opcode; /* Operation to be
performed; lio_listio() only */ /* Various
implementation-internal fields not shown */ };

MPI-IO - Non-blocking I/O functions

• MPI-IO non-blocking I/O functions
• MPI_File_iwrite(MPI_File fh, const void *buf, int count, MPI_Datatype
datatype, MPI_Request *request)

• MPI_File_iwrite_at
• MPI_File_iwrite_all
• MPI_File_iwrite_at_all
• MPI_file_iread
• MPI_file_iread_at
• MPI_file_iread_all
• MPI_file_iread_at_all

• All these functions return a request ID
• One can use this request ID to check on the status or wait for completion
• MPI_Wait(MPI_Request *request, MPI_Status *status)

4

HDF5 Virtual Object Layer (VOL)

5

HDF5 API

…

…

All Other
HDF5
Routines

Pa
ss
-t
hr
ou

gh
Te
rm

in
al

Virtual
Object
Layer
(VOL)

Operations on a Container

HDF5 Library
Infrastructure

N
at
iv
e

As
yn
ch
ro
no

us

DA
O
S

RE
ST

He
rm

es

Ca
ch
in
g

Tr
ac
in
g

In
de

pe
nd

en
t

M
et
ad
at
a

Co
nn

ec
to
rs

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

HDF5 Async VOL Implementation

• Asynchronous task queue
• Transparent background thread execution using Argobots

6

Argobots: A Lightweight Low-level Threading Framework (https://www.argobots.org/)
Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

https://www.argobots.org/

Transparent Task Dependency Management

• All I/O operations can only be executed after a successful file
create/open.

• A file close operation can only be executed after all previous
operations in the file have been completed.

• All read or write operations must be executed after a prior write
operation to the same object.

• All write operations must be executed after a prior read operation
to the same object.

• All collective operations must be executed in the same order with
regard to other collective operations.

• Only one collective operation may be in execution at any time.

7Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Explicit Control with Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);
• H5ESclose(es_id);

8Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Converting Existing HDF5 Codes

9Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Example Code from AMReX

10

https://github.com/AMReX-
Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp#L721

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

https://github.com/AMReX-Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp
https://github.com/AMReX-Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp

11

Async Error Handling

● If an async operation fails, all of its dependent children will not execute and, no further
operations can be added to the event set.

● Error information can be retrieved with:
// Check if event set has failed operations
status = H5ESget_err_status(es_id, &es_err_status);
// Retrieve the number of failed operations in this event set
status = H5ESget_err_count(es_id, &es_err_count);
// Retrieve information about failed operations
status = H5ESget_err_info(es_id, 1, &err_info, &es_err_cleared);
// Retrieve API name, arguments list, file name, function name, and line number
printf(``API name: %s, args: %s, file name: %s, func name: %s, line number: %u'',
err_info.api_name, err_info.api_args, err_info.api_file_name, err_info.api_func_name,
err_info.api_line_num);
// Retrieve operation counter and operation timestamp
printf(``Op counter: %llu, Op timestamp: %llu'', err_info.op_ins_count, err_info.op_ins_ts);

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

How to use Async VOL
Detailed description in https://github.com/hpc-io/vol-async

• Installation
• Compile HDF5 (github develop branch or released version 1.13+), with thread-safety support
• Compile Argobots threading library
• Compile Async VOL connector

• Set environment variables
• export LD_LIBRARY_PATH=$VOL_DIR/lib:$H5_DIR/lib:$ABT_DIR/lib:$LD_LIBRARY_PATH

• export HDF5_PLUGIN_PATH="$VOL_DIR/lib"
• export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"

• Run the application (using the async and EventSet APIs)
• MPI must be initialized with MPI_THREAD_MULTIPLE

12Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

https://github.com/hpc-io/vol-async

Evaluation Overview

Case Information I/O Pattern

VPIC-IO I/O kernel from VPIC, a plasma physics code
that simulates kinetic plasma particles.

Write, single file for all steps, 8
variables, 256 MB per process per
timestep.

BDCATS-IO I/O kernel from BDCATS, a parallel clustering
algorithm code that analyze VPIC data.

Read, single file, 8 variables,
256 MB per process per timestep.

AMReX/Nyx I/O workload from Nyx, an adaptive mesh
cosmological simulation code that solves
equations of compressible hydrodynamics
flow.

Write, one file for each timestep,
6 variables, single refinement level,
with simulation metadata,
385 GB per timestep

AMReX/Castro I/O workload from Castro, an adaptive mesh
compressible radiation / MHD
/hydrodynamics code for astrophysical flows.

Write, one file for each timestep,
6 variables, 3 refinement levels,
with simulation metadata,
559 GB per timestep

13Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Speedup with VPIC-IO and BDCATS-IO on Summit

14

VPIC-IO, writes 256MB per process, 5 steps,
emulated compute time.

BDCATS-IO, reads 256MB per process, 5 steps,
emulated compute time.

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Speedup with AMReX Applications on Summit

15

NyX workload, single refinement level,
writes 385GB x 5 steps, emulated compute time.

Castro workload, 3 refinement levels,
writes 559GB x 5 steps, emulated compute time.

Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Async I/O in Flash-X
• Highly scalable multiphysics simulation

code for heterogeneous compute
architecture

• Supports “uniform” and “adaptive” mesh

• Primarily written in Fortran

• Component based code
• Eulerian base discretization

• AMR is used to:
• Reduce memory footprint
• Reduce computation

• Used for various simulations:
• Galaxy clusters to
• Turbulent Nuclear Burning

16

...
/* create a parallel hdf5 dataset */

#ifdef FLASH_IO_ASYNC_HDF5
dataset =

H5Dcreate_async(*file_identifier,
record_label_new,

H5T_NATIVE_DOUBLE, dataspace,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT, io_es_id);
#else

dataset = H5Dcreate(*file_identifier,
record_label_new,

H5T_NATIVE_DOUBLE, dataspace,
H5P_DEFAULT,H5P_DEFAULT, H5P_DEFAULT);
#endif
...

Slides from Houjun Tang and Rajeev Jain, PDSW 2022 paper presentation

Async I/O performance in Flash-X with SOD configuration
• Sod is a compressible flow explosion problem

widely used for verification of shock-capturing
simulation codes.

• We used a 3D Sod problem with tracer particles.

• Each runs for 109 steps, writes a checkpoint file
every 33 steps, a plot file every 10 steps, and
compared the total execution time with 5
different configurations that uses Synchronous
and Asynchronous I/O, with and without
MPI_THREAD_MULTIPLE, and using GPFS and
UnifyFS.

• For cases with async, the majority of the write
operations are overlapping with Flash-X’s
computation. Exceptions include the initial data
writes and the last step as there is no
computation to overlap with.

17
Slides from Houjun Tang and Rajeev Jain, PDSW 2022 paper presentation

Results: Streaming Sine Wave

• The streaming sine wave test problem is a test
problem for verifying the correctness of the
streaming advection operator in thornado as
well as the Flash-X interface to thornado.

• Uses GPUs and data is copied to CPU for
writing

• At a higher number of nodes the interference
between COM_ time and IO_ is higher as the
I/O time as a whole increases: it is 27.1% for
the 256-node synchronous case.

*SC22 | Dallas, TX | hpc accelerates. 18

The total time required by synchronous I/O increases with
increasing number of nodes. This is because

communication is time-consuming and the GPFS file-
system write operation does not scale well.Slides from Houjun Tang and Rajeev Jain, PDSW 2022 paper presentation

Results: Deforming Bubble Problem

• For the 64-node case - I/O time as a percentage of
the total time goes down from 22.3% to 4.7%.

• For the 256-node case, the I/O time is significantly
higher for the synchronous case;

• The asynchronous I/O time for 256 nodes remains
the same as for other cases, but the Com_ time has
increased because a greater percentage of Com_
time overlaps with IO_ time.

*SC22 | Dallas, TX | hpc accelerates. 19Slides from Houjun Tang and Rajeev Jain, PDSW 2022 paper presentation

Best Practice & Lessons Learned

• Async is effective when I/O time is a significant portion of the total application
execution time, and there is enough compute time to overlap with.

• Some operations cannot be done asynchronously, avoid if possible.
• E.g. H5Dget_space need to perform sync I/O before returning.

• Async debug log available for identification.
• MPI_THREAD_MULTIPLE has overhead.

• 3-5% observed performance slowdown.
• Background thread interference.

• Minimal interference for GPU-accelerated applications.
• OpenMP applications should leave 1 core/thread for the async background thread.

• Memory allocation needs to be handled properly.
• Peak memory usage could be higher than sync mode, due to double buffering.
• Will switch to sync mode when not enough system memory is available.

21Slides from Houjun Tang, ECP Annual Meeting 2022 presentation

Summary of today’s class

• Asynchronous I/O

• Next Class –
• More evaluation of async I/O
• Caching and prefetching

• Class project –
• Status update on Apr 4th
• Final presentation on Apr 20th
• Final exam on Apr 25th

22

