
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 17: Asynchronous I/O

03/23/2023

https://sbyna.github.io/


Today’s class

• Any questions?

• Class presentation topic

• Today’s class –
• HDF5 optimizations – Async I/O
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Why Async?
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Async

Sync
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POSIX asynchronous I/O (AIO)

• Applications initiate one or more 
I/O operations that are performed 
asynchronously (i.e., in the 
background)

• aio_read()
• aio_write()
• aio_fsync()
• lio_listio() – Enqueue 

multiple I/O requests using a 
single function call
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Asynchronous I/O control block – to control how asynchronous I/O 
operations are performed.

struct aiocb {
int aio_fildes; /* File descriptor */ 
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */ 
size_t aio_nbytes; /* Length of transfer */ 
int aio_reqprio; /* Request priority */ 
struct sigevent aio_sigevent; /* Notification 
method */ int aio_lio_opcode; /* Operation to be 
performed; lio_listio() only */ /* Various 
implementation-internal fields not shown */ };



MPI-IO - Non-blocking I/O functions

• MPI-IO non-blocking I/O functions
• MPI_File_iwrite(MPI_File fh, const void *buf, int count, MPI_Datatype
datatype, MPI_Request *request)

• MPI_File_iwrite_at
• MPI_File_iwrite_all
• MPI_File_iwrite_at_all
• MPI_file_iread
• MPI_file_iread_at
• MPI_file_iread_all
• MPI_file_iread_at_all

• All these functions return a request ID
• One can use this request ID to check on the status or wait for completion
• MPI_Wait(MPI_Request *request, MPI_Status *status)
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HDF5 Virtual Object Layer (VOL)
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HDF5 Async VOL Implementation

• Asynchronous task queue
• Transparent background thread execution using Argobots
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Argobots: A Lightweight Low-level Threading Framework (https://www.argobots.org/) 
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Transparent Task Dependency Management

• All I/O operations can only be executed after a successful file 
create/open. 

• A file close operation can only be executed after all previous 
operations in the file have been completed. 

• All read or write operations must be executed after a prior write 
operation to the same object. 

• All write operations must be executed after a prior read operation 
to the same object. 

• All collective operations must be executed in the same order with 
regard to other collective operations. 

• Only one collective operation may be in execution at any time.
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Explicit Control with Async and EventSet APIs

• Async version of HDF5 APIs
• H5Fcreate_async(fname, …, es_id);
• H5Dwrite_async(dset, …, es_id);
• …

• Track and inspect multiple I/O operations with an EventSet ID
• H5EScreate();
• H5ESwait(es_id, timeout, &remaining, &op_failed);
• H5ESget_err_info(es_id, ...);
• H5ESclose(es_id);

8Slides from Houjun Tang, ECP Annual Meeting 2022 presentation



Converting Existing HDF5 Codes
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Example Code from AMReX
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https://github.com/AMReX-
Codes/amrex/blob/development/Src/Extern/HDF5/AMReX_PlotFileUtilHDF5.cpp#L721
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Async Error Handling

● If an async operation fails, all of its dependent children will not execute and, no further 
operations can be added to the event set.

● Error information can be retrieved with:
// Check if event set has failed operations
status = H5ESget_err_status(es_id, &es_err_status);    
// Retrieve the number of failed operations in this event set  
status = H5ESget_err_count(es_id, &es_err_count);  
// Retrieve information about failed operations  
status = H5ESget_err_info(es_id, 1, &err_info, &es_err_cleared);  
// Retrieve API name, arguments list, file name, function name, and line number  
printf(``API name: %s, args: %s, file name: %s, func name: %s, line number: %u'', 
err_info.api_name, err_info.api_args, err_info.api_file_name, err_info.api_func_name, 
err_info.api_line_num);  
// Retrieve operation counter and operation timestamp  
printf(``Op counter: %llu, Op timestamp: %llu'', err_info.op_ins_count, err_info.op_ins_ts); 
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How to use Async VOL
Detailed description in https://github.com/hpc-io/vol-async

• Installation
• Compile HDF5 (github develop branch or released version 1.13+), with thread-safety support
• Compile Argobots threading library
• Compile Async VOL connector

• Set environment variables
• export LD_LIBRARY_PATH=$VOL_DIR/lib:$H5_DIR/lib:$ABT_DIR/lib:$LD_LIBRARY_PATH

• export HDF5_PLUGIN_PATH="$VOL_DIR/lib"
• export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}" 

• Run the application (using the async and EventSet APIs)
• MPI must be initialized with MPI_THREAD_MULTIPLE
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Evaluation Overview

Case Information I/O Pattern

VPIC-IO I/O kernel from VPIC, a plasma physics code 
that simulates kinetic plasma particles.

Write, single file for all steps, 8 
variables, 256 MB per process per 
timestep.

BDCATS-IO I/O kernel from BDCATS, a parallel clustering 
algorithm code that analyze VPIC data.

Read, single file, 8 variables,
256 MB per process per timestep.

AMReX/Nyx I/O workload from Nyx, an adaptive mesh 
cosmological simulation code that solves 
equations of compressible hydrodynamics
flow.

Write, one file for each timestep,
6 variables, single refinement level,
with simulation metadata,
385 GB per timestep

AMReX/Castro I/O workload from Castro, an adaptive mesh 
compressible radiation / MHD 
/hydrodynamics code for astrophysical flows.

Write, one file for each timestep,
6 variables, 3 refinement levels,
with simulation metadata,
559 GB per timestep
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Speedup with VPIC-IO and BDCATS-IO on Summit
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VPIC-IO, writes 256MB per process, 5 steps, 
emulated compute time.

BDCATS-IO, reads 256MB per process, 5 steps, 
emulated compute time.
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Speedup with AMReX Applications on Summit
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NyX workload, single refinement level, 
writes 385GB x 5 steps, emulated compute time.

Castro workload, 3 refinement levels, 
writes 559GB x 5 steps, emulated compute time.
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Async I/O in Flash-X
• Highly scalable multiphysics simulation 

code for heterogeneous compute 
architecture 

• Supports “uniform” and “adaptive” mesh

• Primarily written in Fortran

• Component based code
• Eulerian base discretization

• AMR is used to:
• Reduce memory footprint
• Reduce computation

• Used for various simulations:
• Galaxy clusters to 
• Turbulent Nuclear Burning
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...
/* create a parallel hdf5 dataset */

#ifdef FLASH_IO_ASYNC_HDF5
dataset = 

H5Dcreate_async(*file_identifier, 
record_label_new,

H5T_NATIVE_DOUBLE, dataspace, 
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT, io_es_id);
#else

dataset = H5Dcreate(*file_identifier, 
record_label_new,

H5T_NATIVE_DOUBLE, dataspace, 
H5P_DEFAULT,H5P_DEFAULT, H5P_DEFAULT);
#endif
...
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Async I/O performance in Flash-X with SOD configuration
• Sod is a compressible flow explosion problem 

widely used for verification of shock-capturing 
simulation codes.

• We used a 3D Sod problem with tracer particles. 

• Each runs for 109 steps, writes a checkpoint file 
every 33 steps, a plot file every 10 steps, and 
compared the total execution time with 5 
different configurations that uses Synchronous 
and Asynchronous I/O, with and without 
MPI_THREAD_MULTIPLE, and using GPFS and 
UnifyFS. 

• For cases with async, the majority of the write 
operations are overlapping with Flash-X’s 
computation. Exceptions include the initial data 
writes and the last step as there is no 
computation to overlap with.
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Results: Streaming Sine Wave

• The streaming sine wave test problem is a test 
problem for verifying the correctness of the 
streaming advection operator in thornado as 
well as the Flash-X interface to thornado.

• Uses GPUs and data is copied to CPU for 
writing

• At a higher number of nodes the interference 
between COM_ time and IO_ is higher as the 
I/O time as a whole increases: it is 27.1% for 
the 256-node synchronous case.

*SC22 | Dallas, TX | hpc accelerates. 18

The total time required by synchronous I/O increases with 
increasing number of nodes. This is because 

communication is time-consuming and the GPFS file-
system write operation does not scale well.Slides from Houjun Tang and Rajeev Jain, PDSW 2022 paper presentation



Results: Deforming Bubble Problem

• For the 64-node case - I/O time as a percentage of 
the total time goes down from 22.3% to 4.7%. 

• For the 256-node case,  the I/O time is significantly 
higher for the synchronous case; 

• The asynchronous I/O time for 256 nodes remains 
the same as for other cases, but the Com_  time has 
increased because a greater percentage of Com_ 
time overlaps with IO_ time.
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Best Practice & Lessons Learned

• Async is effective when I/O time is a significant portion of the total application 
execution time, and there is enough compute time to overlap with.

• Some operations cannot be done asynchronously, avoid if possible.
• E.g. H5Dget_space need to perform sync I/O before returning.

• Async debug log available for identification.
• MPI_THREAD_MULTIPLE has overhead.

• 3-5% observed performance slowdown.
• Background thread interference.

• Minimal interference for GPU-accelerated applications.
• OpenMP applications should leave 1 core/thread for the async background thread.

• Memory allocation needs to be handled properly.
• Peak memory usage could be higher than sync mode, due to double buffering.
• Will switch to sync mode when not enough system memory is available.
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Summary of today’s class

• Asynchronous I/O

• Next Class –
• More evaluation of async I/O
• Caching and prefetching

• Class project –
• Status update on Apr 4th
• Final presentation on Apr 20th
• Final exam on Apr 25th
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