
CSE 5449: Intermediate Studies in Scientific Data Management

Dr. Suren Byna
The	Ohio	State	University
E-mail:

https://sbyna.github.io

Lecture 19: Caching and prefetching in HDF5

03/28/2023

https://sbyna.github.io/

Today’s class

• Any questions?

• Class presentation topic

• Today’s class –
• HDF5 optimizations – Caching and prefetching

1

Storage systems in high performance compute systems

IO Gap

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

IO Gap

Shared burst buffer

Memory

Parallel file system
(Lustre, GPFS)

Archival Storage
(HPSS tape)

Conventional Current
Eg. Cori @ NERSC

Upcoming: Aurora,
Frontier, etc.

Memory

Parallel file system
(Lustre, GPFS)

SSD-based Node-local
storage

HBM
GPU

memory

SSD-based Parallel File System

Archival storage (HPSS tape)

2

HDF5 Virtual Object Layer (VOL)

3

HDF5 API

…

…

All Other
HDF5
Routines

Pa
ss
-t
hr
ou

gh
Te
rm

in
al

Virtual
Object
Layer
(VOL)

Operations on a Container

HDF5 Library
Infrastructure

N
at

iv
e

As
yn
ch
ro
no

us

DA
O

S

RE
ST

He
rm

es

Ca
ch

e

Tr
ac

in
g

In
de

pe
nd

en
t

M
et

ad
at

a

Co
nn

ec
to

rs

Slide from ECP ExaIO annual meeting presentations

Huihuo Zheng, Venkatram Vishwanath, Quincey Koziol, Houjun Tang, John Ravi, John Mainzer and Suren Byna, "HDF5 Cache
VOL: Efficient and Scalable Parallel I/O through Caching Data on Node-local Storage", The 22nd IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGrid) 2022.

Transparently integrating node-local storage into parallel I/O
workflows

Node-local storage
• Local & private; no contention or job interference

à more stable and scalable IO;
• Faster (larger aggregate bandwidth).

Theta (w) – Lustre: 650 GB/s, SSD: 3TB/s
Summit (w) – GPFS: 2.5 TB/s, NVMe: 9.7 TB/s

Node-local storage (SSD, NVMe, etc)
Remote storage

Typical HPC storage hierarchy

Polaris @ ALCF: NVMe (7.68 TB / node)
Summit @ OLCF: GPFS + NVMe (1.6 TB / node)
Fugaku @ RIKEN: Lustre + NVMe (1.6 TB / 16 nodes)
Frontier @ OLCF: Lustre + NVMe (37PB total)

https://github.com/hpc-io/vol-cache.git

Challenges
• No global namespace;
• Accessible only during job running;
• Limited system software support.

Cache VOL: using node-local storage as a cache

Slide from Huihuo Zheng, CCGrid 2022 presentation

Using caching to improve data access

Caching in memory hierarchy

5

• Write: the data is copied from the user's buffer
into the page cache in DRAM. The actual writes
to disk are done later.

• Read: data is read directly from the page cache
in DRAM if it is cached there.

Page caching in I/O

~TB/s

~100GB/s

Slide from Huihuo Zheng, CCGrid 2022 presentation

Using node-local storage as a cache to the global parallel file
systems

6

Design consideration
• Managing node-local storage

inside the I/O libraries
• Caching and async. data

migration in the background;
• Hiding all complexity;
• Easy integration to existing

applications with minimal
code change.

Parallel file system storage

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM
Compute nodes

Node-local storage

10-100GB/s

1 – 10 TB/s

Data migration

Slide from Huihuo Zheng, CCGrid 2022 presentation

Implementation as a HDF5 pass-through Virtual Object Layer
connector

7

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf

HDF5 is a high-level I/O library
used for storing scientific data in
a hierarchical database-like way.

Parallel I/O software layers

Virtual Object Layer (VOL) Framework:
an abstraction layer within HDF5 Library.

H5Fcreate, H5Gcreat, … H5Dwrite, …

Pass-through VOL – perform operations (e.g., caching)
before passing the data on to the next connector.

Slide from Huihuo Zheng, CCGrid 2022 presentation

https://www.hdfgroup.org/wp-content/uploads/2020/10/Virtual-Object-Layer-VOL-Intro.pdf

Parallel Write (H5Dwrite)

8

Parallel file system

Shared HDF5 file

Compute I/O (RAMàPFS) Compute

https://github.com/hpc-io/vol-cache.git

Compute node RAM

Slide from Huihuo Zheng, CCGrid 2022 presentation

Parallel Write (H5Dwrite)

9

Partial overlap of compute with I/O

Parallel file system
Shared HDF5 file

Node-local storage

1. Data is synchronously copied from the
memory buffer to memory mapped files
on the node-local storage using POSIX I/O.

2. Move data from memory mapped
file to the parallel file system
asynchronously through Async VOL
stacked below the Cache VOL

3. Wait for all the tasks to finish in
H5Dclose() / H5Fclose()

Compute RAM->NLS Compute
I/O: NLS->PFS

Compute I/O (RAMàPFS) Computew/o caching

w/ caching

Details are hidden from the application developers.

https://github.com/hpc-io/vol-cache.git

Compute node RAM

Slide from Huihuo Zheng, CCGrid 2022 presentation

Asynchronous I/O scenarios

10

Computation is longer than I/O time

Partial overlap

Slow downJohn Ravi, Suren Byna, Quincey Koziol, Houjun
Tang, and Michela Becchi, "Evaluating
Asynchronous Parallel I/O on HPC Systems", 37th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS) 2023.

Parallel Read (H5Dread)

11

Single shared HDF5 file

MPI_Win

1. Reading data
from parallel file
system

MPI_Put 2. Caching data
using MPI_Put

Parallel file system

Compute
node RAM

Create memory mapped files and attached
virtual memory pointer to an MPI window

Node-local
storage

Memory-mapped shared file system
• Each process exposes a portion of its storage to

other processes through MPI Window
• Other processes read from or write to this

shared storage space through MPI_Put, MPI_Get.

Compute I/O Compute

Compute I/O Computew/o Caching

w/ Caching

MPI_Get Reading data from
NLS using MPI_Put

First time reading the data Reading the data directly from node-local storage

https://github.com/hpc-io/vol-cache.git

Targeting workloads with repeatedly reading the
same dataset multiple times.

Slide from Huihuo Zheng, CCGrid 2022 presentation

Easy to adopt in the applications

export HDF5_PLUGIN_PATH=$HDF5_VOL_DIR/lib
export HDF5_VOL_CONNECTOR="cache_ext
config=SSD.cfg;under_vol=518;under_info={under_vol=0;under_info={}}”
export LD_LIBRARY_PATH=$HDF5_PLUGIN_PATH:$LD_LIBRARY_PATH

3) Initializing MPI with MPI_Init_thread(…, MPI_THREAD_MULTIPLE…)

2) Enabling cache VOL
Opt. 1 Through global environment variables (HDF5_CACHE_RD / HDF5_CACHE_WR [yes|no])
Opt. 2 Through setting file access property: H5Pset_fapl_plist(’HDF5_CACHE_RD’, true)

1) Setting VOL connectors #contents of SSD.cfg
HDF5_CACHE_STORAGE_SIZE 137438953472
HDF5_CACHE_STORAGE_TYPE SSD
HDF5_CACHE_STORAGE_PATH /local/scratch/
HDF5_CACHE_STORAGE_SCOPE LOCAL
HDF5_CACHE_WRITE_BUFFER_SIZE 102457690
HDF5_CACHE_REPLACEMENT_POLICY LRU

https://github.com/hpc-io/vol-cache.git

4) In some cases, rearranging the function calls to allow the overlap of computation with data
migration (check our github repo for the examples and best practices)

Slide from Huihuo Zheng, CCGrid 2022 presentation

Write performance (VPIC-IO)

Observed write rate on (Left) Theta and (Right) Summit. The number of time steps is 20. The write rate reported
here is the average over the 20 timesteps. The emulated time is 20 seconds per time step on Summit and 200
seconds per time step on Theta.

https://github.com/hpc-io/vol-cache.git 13

VPIC: plasma physics application for simulating the dynamics of plasma particle.
I/O pattern: each process writes check-points data (32MB x 8) to a shared file at each timestep.

Slide from Huihuo Zheng, CCGrid 2022 presentation

Read performance (Deep Learning)

Improvement of training throughput by caching data on the node-local storage: (Left) AlexNet and (Right)
CosmoFlow. The training were done on 16 DGX nodes with 128 Nvidia A100 GPUs on ThetaGPU.

14

AlexNet CosmoFlow
Dataset (8TB): (524288, 128, 128, 128, 4)

Dataset (180GB): (1281167, 224, 224, 3)

AlexNet: 2D CNN model for image classification.
CosmoFlow: 3D CNN model for predicting universe cosmology parameters.
I/O pattern: each training step randomly read a minibatch of samples from a shared HDF5 file

Slide from Huihuo Zheng, CCGrid 2022 presentation

Summary of today’s class

• Today’s class: HDF5 cache VOL

• Next Class – Proactive Data Containers (PDC)

• Class project –
• Status update on Apr 4th
• Final presentation on Apr 20th

• Final exam on Apr 25th

15

